1.En Bloc Resection of Thoracic and Upper Lumbar Spinal Tumors Using a Novel Rotation-Reversion Technique through Posterior-Only Approach
Ming LU ; Changhe HOU ; Wei CHEN ; Zixiong LEI ; Shuangwu DAI ; Shaohua DU ; Qinglin JIN ; Dadi JIN ; Haomiao LI
Clinics in Orthopedic Surgery 2025;17(2):346-353
Background:
En bloc resection is recommended for the treatment of malignant and aggressive benign spinal tumors; however, it often requires a combined anterior-posterior approach, which is usually accompanied by longer surgical duration, increased blood loss, larger trauma, and surgical complexity. The present study describes a novel rotation-reversion technique for en bloc resection of the thoracic and upper lumbar spinal tumors using a posterior-only approach and evaluate its safety and efficacy.
Methods:
Thirteen patients with thoracic and upper lumbar (L1-L3) spinal tumors were treated with en bloc resection using the rotation-reversion technique through a posterior-only approach at our institution between 2015 and 2023. The clinical characteristics and surgical results of the patients were reviewed and analyzed.
Results:
Posterior-only en bloc resection was performed successfully in all 13 patients using the rotation-reversion technique, with a median follow-up of 30.4 months (range, 6–74 months). The average maximum size of these 13 tumors was 5.7 × 5.8 × 4.8 cm.The mean operation time and blood loss were 458.5 minutes (range, 220–880 minutes) and 3,146.2 mL (range, 1,000–6,000 mL), respectively, with 4 of the 13 patients (30.8%) experiencing perioperative complications. Negative margins were achieved in all the 13 patients (100%). One patient experienced local recurrence (7.7%) and 1 patient experienced instrumentation failures. Interbody fusion was confirmed in 11 of the 13 patients (84.6%), with a median fusion time of 6.9 months. All of the 13 patients experienced varying degrees of mild postoperative neurological deficits owing to resection of the nerve roots affected by tumor invasion of the vertebrae. No vessel injury or postoperative neurological paralysis occurred, except 1 patient who had been completely paralyzed before surgery.
Conclusions
The rotation-reversion technique is an effective procedure for en bloc resection of selected thoracic and upper lumbar spinal tumors through the posterior-only approach.
2.En Bloc Resection of Thoracic and Upper Lumbar Spinal Tumors Using a Novel Rotation-Reversion Technique through Posterior-Only Approach
Ming LU ; Changhe HOU ; Wei CHEN ; Zixiong LEI ; Shuangwu DAI ; Shaohua DU ; Qinglin JIN ; Dadi JIN ; Haomiao LI
Clinics in Orthopedic Surgery 2025;17(2):346-353
Background:
En bloc resection is recommended for the treatment of malignant and aggressive benign spinal tumors; however, it often requires a combined anterior-posterior approach, which is usually accompanied by longer surgical duration, increased blood loss, larger trauma, and surgical complexity. The present study describes a novel rotation-reversion technique for en bloc resection of the thoracic and upper lumbar spinal tumors using a posterior-only approach and evaluate its safety and efficacy.
Methods:
Thirteen patients with thoracic and upper lumbar (L1-L3) spinal tumors were treated with en bloc resection using the rotation-reversion technique through a posterior-only approach at our institution between 2015 and 2023. The clinical characteristics and surgical results of the patients were reviewed and analyzed.
Results:
Posterior-only en bloc resection was performed successfully in all 13 patients using the rotation-reversion technique, with a median follow-up of 30.4 months (range, 6–74 months). The average maximum size of these 13 tumors was 5.7 × 5.8 × 4.8 cm.The mean operation time and blood loss were 458.5 minutes (range, 220–880 minutes) and 3,146.2 mL (range, 1,000–6,000 mL), respectively, with 4 of the 13 patients (30.8%) experiencing perioperative complications. Negative margins were achieved in all the 13 patients (100%). One patient experienced local recurrence (7.7%) and 1 patient experienced instrumentation failures. Interbody fusion was confirmed in 11 of the 13 patients (84.6%), with a median fusion time of 6.9 months. All of the 13 patients experienced varying degrees of mild postoperative neurological deficits owing to resection of the nerve roots affected by tumor invasion of the vertebrae. No vessel injury or postoperative neurological paralysis occurred, except 1 patient who had been completely paralyzed before surgery.
Conclusions
The rotation-reversion technique is an effective procedure for en bloc resection of selected thoracic and upper lumbar spinal tumors through the posterior-only approach.
3.En Bloc Resection of Thoracic and Upper Lumbar Spinal Tumors Using a Novel Rotation-Reversion Technique through Posterior-Only Approach
Ming LU ; Changhe HOU ; Wei CHEN ; Zixiong LEI ; Shuangwu DAI ; Shaohua DU ; Qinglin JIN ; Dadi JIN ; Haomiao LI
Clinics in Orthopedic Surgery 2025;17(2):346-353
Background:
En bloc resection is recommended for the treatment of malignant and aggressive benign spinal tumors; however, it often requires a combined anterior-posterior approach, which is usually accompanied by longer surgical duration, increased blood loss, larger trauma, and surgical complexity. The present study describes a novel rotation-reversion technique for en bloc resection of the thoracic and upper lumbar spinal tumors using a posterior-only approach and evaluate its safety and efficacy.
Methods:
Thirteen patients with thoracic and upper lumbar (L1-L3) spinal tumors were treated with en bloc resection using the rotation-reversion technique through a posterior-only approach at our institution between 2015 and 2023. The clinical characteristics and surgical results of the patients were reviewed and analyzed.
Results:
Posterior-only en bloc resection was performed successfully in all 13 patients using the rotation-reversion technique, with a median follow-up of 30.4 months (range, 6–74 months). The average maximum size of these 13 tumors was 5.7 × 5.8 × 4.8 cm.The mean operation time and blood loss were 458.5 minutes (range, 220–880 minutes) and 3,146.2 mL (range, 1,000–6,000 mL), respectively, with 4 of the 13 patients (30.8%) experiencing perioperative complications. Negative margins were achieved in all the 13 patients (100%). One patient experienced local recurrence (7.7%) and 1 patient experienced instrumentation failures. Interbody fusion was confirmed in 11 of the 13 patients (84.6%), with a median fusion time of 6.9 months. All of the 13 patients experienced varying degrees of mild postoperative neurological deficits owing to resection of the nerve roots affected by tumor invasion of the vertebrae. No vessel injury or postoperative neurological paralysis occurred, except 1 patient who had been completely paralyzed before surgery.
Conclusions
The rotation-reversion technique is an effective procedure for en bloc resection of selected thoracic and upper lumbar spinal tumors through the posterior-only approach.
4.En Bloc Resection of Thoracic and Upper Lumbar Spinal Tumors Using a Novel Rotation-Reversion Technique through Posterior-Only Approach
Ming LU ; Changhe HOU ; Wei CHEN ; Zixiong LEI ; Shuangwu DAI ; Shaohua DU ; Qinglin JIN ; Dadi JIN ; Haomiao LI
Clinics in Orthopedic Surgery 2025;17(2):346-353
Background:
En bloc resection is recommended for the treatment of malignant and aggressive benign spinal tumors; however, it often requires a combined anterior-posterior approach, which is usually accompanied by longer surgical duration, increased blood loss, larger trauma, and surgical complexity. The present study describes a novel rotation-reversion technique for en bloc resection of the thoracic and upper lumbar spinal tumors using a posterior-only approach and evaluate its safety and efficacy.
Methods:
Thirteen patients with thoracic and upper lumbar (L1-L3) spinal tumors were treated with en bloc resection using the rotation-reversion technique through a posterior-only approach at our institution between 2015 and 2023. The clinical characteristics and surgical results of the patients were reviewed and analyzed.
Results:
Posterior-only en bloc resection was performed successfully in all 13 patients using the rotation-reversion technique, with a median follow-up of 30.4 months (range, 6–74 months). The average maximum size of these 13 tumors was 5.7 × 5.8 × 4.8 cm.The mean operation time and blood loss were 458.5 minutes (range, 220–880 minutes) and 3,146.2 mL (range, 1,000–6,000 mL), respectively, with 4 of the 13 patients (30.8%) experiencing perioperative complications. Negative margins were achieved in all the 13 patients (100%). One patient experienced local recurrence (7.7%) and 1 patient experienced instrumentation failures. Interbody fusion was confirmed in 11 of the 13 patients (84.6%), with a median fusion time of 6.9 months. All of the 13 patients experienced varying degrees of mild postoperative neurological deficits owing to resection of the nerve roots affected by tumor invasion of the vertebrae. No vessel injury or postoperative neurological paralysis occurred, except 1 patient who had been completely paralyzed before surgery.
Conclusions
The rotation-reversion technique is an effective procedure for en bloc resection of selected thoracic and upper lumbar spinal tumors through the posterior-only approach.
5.Mechanism of Shenkang injection in treatment of renal fibrosis based on bioinformatics and in vitro experimental verification
Gao-Quan MENG ; Ming-Liang ZHANG ; Xiao-Fei CHEN ; Xiao-Yan WANG ; Wei-Xia LI ; Dai ZHANG ; Lu JIANG ; Ming-Ge LI ; Xiao-Shuai ZHANG ; Wei-Ting MENG ; Bing HAN ; Jin-Fa TANG
Chinese Pharmacological Bulletin 2024;40(10):1953-1962
Aim To explore the mechanism and mate-rial basis of Shenkang injection(SKI)in the treatment of renal fibrosis(RF)by bioinformatics and in vitro experiments.Methods The differentially expressed genes of RF were screened by GEO database.With the help of CMAP database,based on the similarity princi-ple of gene expression profile,the drugs that regulated RF were repositioned,and then the components of SKI potential treatment RF were screened by molecular fin-gerprint similarity analysis.At the same time,the core targets and pathways of SKI regulating RF were predic-ted based on network pharmacology.Finally,it was verified by molecular docking and cell experiments.Results Based on the GEO database,two RF-related data sets were screened,and CMAP was relocated to three common RF therapeutic drugs(saracatinib,da-satinib,pp-2).Molecular fingerprint similarity analysis showed that RF therapeutic drugs had high structural similarity with five SKI components such as salvianolic acid B and hydroxysafflor yellow A.Molecular docking results showed that salvianolic acid B,hydroxysafflor yellow A and other components had good binding abili-ty with MMP1 and MMP13,which were the core targets of SKI-regulated potential treatment of RF.Network pharmacology analysis suggested that the core targets of SKI were mainly enriched in signaling pathways such as Relaxin and AGE-RAGE.Cell experiments showed that SKI could significantly reduce the mRNA expres-sion levels of AGER,NFKB1,COL1A1,SERPINE1,VEGFC in AGE-RAGE signaling pathway and MMP1 and MMP13 in Relaxin signaling pathway in RF model cells,and significantly increase the mRNA expression level of RXFP1.Conclusions SKI can play a role in the treatment of RF by regulating Relaxin and AGE-RAGE signaling pathways,and its material basis may be salvianolic acid B,hydroxysafflor yellow A and other components.
6.Immunological characteristics of the PhoP protein of two-component system in Mycobacterium tuberculosis
Xue LI ; Huan-Huan NING ; Jian KANG ; Ming-Ze XU ; Ruo-Nan CUI ; Ting DAI ; Yan-Zhi LU ; Sa XUE ; Yin-Lan BAI
Chinese Journal of Zoonoses 2024;40(4):352-358
In this study,the immunological characteristics of the PhoP protein were explored with a two-component system of Mycobacterium tuberculosis(Mtb).Bioinformatics was used to predict the B and T cell epitopes of the PhoP protein.A re-combinant expression plasmid was constructed by PCR analysis of the phoP sequence and cloning into the prokaryotic expres-sion vector pET-28a(+).Competent Escherichia coli BL21 cells were transformed with the recombinant plasmid and expres-sion was induced with IPTG.The recombinant PhoP protein was purified by affinity chromatography.Serum levels of PhoP-specific antibodies in Mtb-infected mice and tuberculosis(TB)patients were analyzed with an ELISA.BALB/c mice were im-munized with the PhoP recombinant protein by intramuscular injection.Sera of mice were collected and antibody titers were detected with an ELISA and specificity was assessed by West-ern blot analysis.Mouse splenocytes were isolated and the pro-portions of IFN-y-positive cells and cytokine levels were detec-ted with an ELISpot and ELISA,respectively.Bioinformatics i-dentified 24 B cell and 11 T cell epitopes of the PhoP protein.A prokaryotic recombinant vector of PhoP was successfully con-structed and the recombinant PhoP protein was obtained by purification.Specific antibody levels to PhoP in sera of Mtb in-fected mice and TB patients increased significantly,with preci-sion of 99.9%and 82.5%,and specificity of 100%,respectively.PhoP protein immunization successfully induced production of specific antibodies in mice.Stimulated by antigens in vitro,IL-2 and IFN-γ levels were significantly increased in the splenocytes of immunized mice.Immunization with the PhoP protein induce a humoral immune response and Thl-dominated cellular immu-nity,indicating that the PhoP protein was immunogenic with diagnostic efficacy for TB.These results lay a foundation to clari-fy the role of PhoP in Mtb infection and application for diagnosis and prevention of TB.
7.Predictive value of LPR for one-year death in patients with advanced colon cancer undergoing chemotherapy
China Modern Doctor 2024;62(29):28-32
Objective To investigate the value of platelet/lymphocyte ratio(PLR)in predicting death within 1 year in patients with advanced colon cancer undergoing chemotherapy.Methods A total of 166 patients diagnosed with advanced colon cancer were selected from March 2021 to March 2023 in Jilin City Central Hospital.During 1-year follow-up,72 patients died(death group)and 94 survived(survival group).The clinicopathological data and the levels of PLR,carcinoembryonic antigen(CEA),carbohydrate antigen(CA)199,CA724 and CA153 were compared between two groups.The influencing factors of death within 1 year in patients with advanced colon cancer were analyzed by multivariate Logistic regression.Receiver operating characteristic(ROC)curve evaluated the predictive value of PLR for death within 1 year in patients with advanced colon cancer.Results The mortality rate within 1 year was 43.37%.Compared with survival group,there was no statistically significant difference in gender,age,tumor node metastasis classification stage,location of colon,number of chemotherapy courses,and cancer history in death group(P>0.05),but there were differences in diabetes history,smoking history,PLR,CEA,CA199,CA724 and CA153 levels in death group(P<0.05).Multivariate Logistic regression analysis showed that PLR(OR=1.056,95%CI:1.000-1.116),CEA(OR=20.122,95%CI:2.602-155.617),CA199(OR=1.227,95%CI:1.069-1.408),CA724(OR=1.864,95%CI:1.174-2.962)and CA153(OR=1.741,95%CI:1.108-2.737)levels were risk factors for death within 1 year in patients with advanced colon cancer undergoing chemotherapy(P<0.05).The ROC curve showed that the area under the curve of PLR level predicting death within 1 year in patients with advanced colon cancer chemotherapy was 0.79,and the sensitivity and specificity were 52.78%and 95.74%,respectively.Conclusion The level of PLR in patients who died within 1 year of chemotherapy for advanced colon cancer was significantly higher than that in patients who survived.PLR levels have reference value in assessing death within 1 year of chemotherapy for advanced colon cancer.
8.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
9.Research Path and Paradigm of Digitization and Intelligentization of Ancient TCM Books Based on the Deep Integration of Knowledge Element Theory and Clinical Needs
Feng YANG ; Yi ZHANG ; Xiaohua TAO ; Jianfeng LI ; Tao LUO ; Jingling CHANG ; Jian CHEN ; Liyun CHEN ; Ming DAI ; Fenglan WANG ; Xiang LU
Journal of Traditional Chinese Medicine 2024;65(12):1201-1207
With the rapid development of information technology, research on ancient TCM books has shifted from the traditional collation and digitization into intelligent knowledge service, thereby achieving the deep integration of ancient TCM books collation and clinical needs. Based on the clinical problem and knowledge element theory, we implemented in-depth indexing and knowledge mining for 600 kinds of ancient TCM books, built a knowledge sharing service platform for ancient TCM books by integrating database, cloud platform, knowledge graph and other technologies, and carried out the thematic literature research and developed databases for four major diseases including stroke, heart failure, liver cirrhosis, and diabetes. The digital intelligence products have been applied in hundreds of hospitals for evaluation and feedback. Finally, through "digital processing plus intelligent application", the two-way interaction between ancient TCM books and current clinical practice is realized, and the path and paradigm of ancient TCM books knowledge serving the modern prevention and control of major diseases is formed, providing reference for the innovative utilization of ancient TCM books.
10.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.

Result Analysis
Print
Save
E-mail