1.Distribution characteristics of self-reported diseases and occupational injuries among workers in manufacturing enterprises
Lin ZHANG ; Zhi’an LI ; Yishuo GU ; Juan QIAN ; Chunhua LU ; Jianjian QIAO ; Yong QIAN ; Zeyun YANG ; Xiaojun ZHU
Journal of Environmental and Occupational Medicine 2025;42(2):165-170
Background Diseases severely affect the efficiency of workers. Comorbidity refers to the coexistence of two or more chronic diseases or health problems in the same individual. Previous studies have primarily focused on occupational injuries caused by environmental exposures, while the analysis of the epidemiological characteristics of self-reported diseases and occupational injuries among manufacturing workers has been insufficient. Objective To analyze the distribution of self-reported diseases and occupational injuries among manufacturing workers, the strength of correlation between different diseases, and common disease combinations, and to preliminarily explore the relationship between self-reported diseases and occupational injuries. Methods A cross-sectional survey was conducted to investigate the occupational injuries of
2.Optimization of simmering technology of Rheum palmatum from Menghe Medical School and the changes of chemical components after processing
Jianglin XUE ; Yuxin LIU ; Pei ZHONG ; Chanming LIU ; Tulin LU ; Lin LI ; Xiaojing YAN ; Yueqin ZHU ; Feng HUA ; Wei HUANG
China Pharmacy 2025;36(1):44-50
OBJECTIVE To optimize the simmering technology of Rheum palmatum from Menghe Medical School and compare the difference of chemical components before and after processing. METHODS Using appearance score, the contents of gallic acid, 5-hydroxymethylfurfural (5-HMF), sennoside A+sennoside B, combined anthraquinone and free anthraquinone as indexes, analytic hierarchy process (AHP)-entropy weight method was used to calculate the comprehensive score of evaluation indicators; the orthogonal experiment was designed to optimize the processing technology of simmering R. palmatum with fire temperature, simmering time, paper layer number and paper wrapping time as factors; validation test was conducted. The changes in the contents of five anthraquinones (aloe-emodin, rhein, emodin, chrysophanol, physcion), five anthraquinone glycosides (barbaloin, rheinoside, rhubarb glycoside, emodin glycoside, and emodin methyl ether glycoside), two sennosides (sennoside A, sennoside B), gallic acid and 5-HMF were compared between simmered R. palmatum prepared by optimized technology and R. palmatum. RESULTS The optimal processing conditions of R. palmatum was as follows: each 80 g R. palmatum was wrapped with a layer of wet paper for 0.5 h, simmered on high heat for 20 min and then simmered at 140 ℃, the total simmering time was 2.5 h. The average comprehensive score of 3 validation tests was 94.10 (RSD<1.0%). After simmering, the contents of five anthraquinones and two sennosides were decreased significantly, while those of 5 free anthraquinones and gallic acid were increased to different extents; a new component 5-HMF was formed. CONCLUSIONS This study successfully optimizes the simmering technology of R. palmatum. There is a significant difference in the chemical components before and after processing, which can explain that simmering technology slows down the relase of R. palmatum and beneficiate it.
3.Utility of the China-PAR Score in predicting secondary events among patients undergoing percutaneous coronary intervention.
Jianxin LI ; Xueyan ZHAO ; Jingjing XU ; Pei ZHU ; Ying SONG ; Yan CHEN ; Lin JIANG ; Lijian GAO ; Lei SONG ; Yuejin YANG ; Runlin GAO ; Xiangfeng LU ; Jinqing YUAN
Chinese Medical Journal 2025;138(5):598-600
4.Critical role of mitochondrial dynamics in chronic respiratory diseases and new therapeutic directions.
Xiaomei WANG ; Ziming ZHU ; Haocheng JIA ; Xueyi LU ; Yingze ZHANG ; Yingxin ZHU ; Jinzheng WANG ; Yanfang WANG ; Rubin TAN ; Jinxiang YUAN
Chinese Medical Journal 2025;138(15):1783-1793
Chronic obstructive pulmonary disease (COPD) and pulmonary hypertension (PH) are both chronic progressive respiratory diseases that cannot be completely cured. COPD is characterized by irreversible airflow limitation, chronic airway inflammation, and gradual decline in lung function, whereas PH is characterized by pulmonary vasoconstriction, remodeling, and infiltration of inflammatory cells. These diseases have similar pathological features, such as vascular hyperplasia, arteriolar contraction, and inflammatory infiltration. Despite these well-documented observations, the exact mechanisms underlying the occurrence and development of COPD and PH remain unclear. Evidence that mitochondrial dynamics imbalance is one major factor in the development of COPD and PH. Mitochondrial dynamics is precisely regulated by mitochondrial fusion proteins and fission proteins. When mitochondrial dynamics equilibrium is disrupted, it causes mitochondrial and even cell morphological dysfunction. Mitochondrial dynamics participates in various pathological processes for heart and lung disease. Mitochondrial dynamics may be different in the early and late stages of COPD and PH. In the early stages of the disease, mitochondrial fusion increases, inhibiting fission, and thereby compensatorily increasing adenosine triphosphate (ATP) production. With the development of the disease, mitochondria decompensation causes excessive fission. Mitochondrial dynamics is involved in the development of COPD and PH in a spatiotemporal manner. Based on this understanding, treatment strategies for mitochondrial dynamics abnormalities may be different at different stages of COPD and PH disease. This article will provide new ideas for the potential treatment of related diseases.
Humans
;
Mitochondrial Dynamics/physiology*
;
Pulmonary Disease, Chronic Obstructive/metabolism*
;
Hypertension, Pulmonary/metabolism*
;
Mitochondria/metabolism*
;
Animals
5.Common characteristics and regulatory mechanisms of airway mucus hypersecretion in lung disease.
Ze-Qiang LIN ; Shi-Man PANG ; Si-Yuan ZHU ; Li-Xia HE ; Wei-Guo KONG ; Wen-Ju LU ; Zi-Li ZHANG
Acta Physiologica Sinica 2025;77(5):989-1000
In a healthy human, the airway mucus forms a thin, protective liquid layer covering the surface of the respiratory tract. It comprises a complex blend of mucin, multiple antibacterial proteins, metabolic substances, water, and electrolytes. This mucus plays a pivotal role in the lungs' innate immune system by maintaining airway hydration and capturing airborne particles and pathogens. However, heightened mucus secretion in the airway can compromise ciliary clearance, obstruct the respiratory tract, and increase the risk of pathogen colonization and recurrent infections. Consequently, a thorough exploration of the mechanisms driving excessive airway mucus secretion is crucial for establishing a theoretical foundation for the eventual development of targeted drugs designed to reduce mucus production. Across a range of lung diseases, excessive airway mucus secretion manifests with unique characteristics and regulatory mechanisms, all intricately linked to mucin. This article provides a comprehensive overview of the characteristics and regulatory mechanisms associated with excessive airway mucus secretion in several prevalent lung diseases.
Humans
;
Mucus/metabolism*
;
Mucins/physiology*
;
Lung Diseases/metabolism*
;
Respiratory Mucosa/metabolism*
;
Pulmonary Disease, Chronic Obstructive/physiopathology*
;
Asthma/physiopathology*
;
Cystic Fibrosis/physiopathology*
;
Mucociliary Clearance/physiology*
6.Integrated multiomics reveal mechanism of Aidi Injection in attenuating doxorubicin-induced cardiotoxicity.
Yan-Li WANG ; Yu-Jie TU ; Jian-Hua ZHU ; Lin ZHENG ; Yong HUANG ; Jia SUN ; Yong-Jun LI ; Jie PAN ; Chun-Hua LIU ; Yuan LU
China Journal of Chinese Materia Medica 2025;50(8):2245-2259
The combination of Aidi Injection(ADI) and doxorubicin(DOX) is a common strategy in the treatment of cancer, which can achieve synergistic anti-tumor effects while attenuating the cardiotoxicity caused by DOX. This study aims to investigate the mechanism of ADI in attenuating DOX-induced cardiotoxicity by multi-omics. DOX was used to induce cardiotoxicity in mice, and the cardioprotective effects of ADI were evaluated based on biochemical indicators and pathological changes. Based on the results, transcriptomics, proteomics, and metabolomics were employed to analyze the changes of endogenous substances in different physiological states. Furthermore, data from multiple omics were integrated to screen key regulatory pathways by which ADI attenuated DOX-induced cardiotoxicity, and important target proteins were selected for measurement by ELISA kits and immunohistochemical analysis. The results showed that ADI significantly reduced the levels of cardiac troponin T(cTnT) and N-terminal pro-B-type natriuretic peptide(NT-proBNP) and effectively ameliorated myocardial fibrosis and intracellular vacuolization, indicating that ADI showed therapeutic effect on DOX-induced cardiotoxicity. The transcriptomics analysis screened out a total of 400 differentially expressed genes(DEGs), which were mainly enriched in inflammatory response, oxidative stress, and myocardial fibrosis. After proteomics analysis, 70 differentially expressed proteins were selected, which were mainly enriched in the inflammatory response, cardiac function, and energy metabolism. A total of 51 differentially expressed metabolites were screened by the metabolomics analysis, and they were mainly enriched in multiple signaling pathways, including the inflammatory response, lipid metabolism, and energy metabolism. The integrated data of multiple omics showed that linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism pathways played an important role in DOX-induced cardiotoxicity, and ADI may exert therapeutic effects by modulating these pathways. Target validation experiments suggested that ADI significantly regulated abnormal protein levels of cyclooxygenase-1(COX-1), cyclooxygenase-2(COX-2), prostaglandin H2(PGH2), and prostaglandin D2(PGD2) in the model group. In conclusion, ADI may attenuate DOX-induced cardiotoxicity by regulating linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism, thus alleviating inflammation of the body.
Doxorubicin/toxicity*
;
Animals
;
Mice
;
Cardiotoxicity/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Proteomics
;
Metabolomics
;
Injections
;
Humans
;
Multiomics
7.Prediction of testicular histology in azoospermia patients through deep learning-enabled two-dimensional grayscale ultrasound.
Jia-Ying HU ; Zhen-Zhe LIN ; Li DING ; Zhi-Xing ZHANG ; Wan-Ling HUANG ; Sha-Sha HUANG ; Bin LI ; Xiao-Yan XIE ; Ming-De LU ; Chun-Hua DENG ; Hao-Tian LIN ; Yong GAO ; Zhu WANG
Asian Journal of Andrology 2025;27(2):254-260
Testicular histology based on testicular biopsy is an important factor for determining appropriate testicular sperm extraction surgery and predicting sperm retrieval outcomes in patients with azoospermia. Therefore, we developed a deep learning (DL) model to establish the associations between testicular grayscale ultrasound images and testicular histology. We retrospectively included two-dimensional testicular grayscale ultrasound from patients with azoospermia (353 men with 4357 images between July 2017 and December 2021 in The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China) to develop a DL model. We obtained testicular histology during conventional testicular sperm extraction. Our DL model was trained based on ultrasound images or fusion data (ultrasound images fused with the corresponding testicular volume) to distinguish spermatozoa presence in pathology (SPP) and spermatozoa absence in pathology (SAP) and to classify maturation arrest (MA) and Sertoli cell-only syndrome (SCOS) in patients with SAP. Areas under the receiver operating characteristic curve (AUCs), accuracy, sensitivity, and specificity were used to analyze model performance. DL based on images achieved an AUC of 0.922 (95% confidence interval [CI]: 0.908-0.935), a sensitivity of 80.9%, a specificity of 84.6%, and an accuracy of 83.5% in predicting SPP (including normal spermatogenesis and hypospermatogenesis) and SAP (including MA and SCOS). In the identification of SCOS and MA, DL on fusion data yielded better diagnostic performance with an AUC of 0.979 (95% CI: 0.969-0.989), a sensitivity of 89.7%, a specificity of 97.1%, and an accuracy of 92.1%. Our study provides a noninvasive method to predict testicular histology for patients with azoospermia, which would avoid unnecessary testicular biopsy.
Humans
;
Male
;
Azoospermia/diagnostic imaging*
;
Deep Learning
;
Testis/pathology*
;
Retrospective Studies
;
Adult
;
Ultrasonography/methods*
;
Sperm Retrieval
;
Sertoli Cell-Only Syndrome/diagnostic imaging*
8.Embracing Internal States: A Review of Optimization of Repetitive Transcranial Magnetic Stimulation for Treating Depression.
Tingting WU ; Qiuxuan YU ; Ximei ZHU ; Yinjiao LI ; Mingyue ZHANG ; Jiahui DENG ; Lin LU
Neuroscience Bulletin 2025;41(5):866-880
Repetitive transcranial magnetic stimulation (rTMS) is a rapid and effective therapy for major depressive disorder; however, there is significant variability in therapeutic outcomes both within and across individuals, with approximately 50% of patients showing no response to rTMS treatment. Many studies have personalized the stimulation parameters of rTMS (e.g., location and intensity of stimulation) according to the anatomical and functional structure of the brain. In addition to these parameters, the internal states of the individual, such as circadian rhythm, behavior/cognition, neural oscillation, and neuroplasticity, also contribute to the variation in rTMS effects. In this review, we summarize the current literature on the interaction between rTMS and internal states. We propose two possible methods, multimodal treatment, and adaptive closed-loop treatment, to integrate patients' internal states to achieve better rTMS treatment for depression.
Humans
;
Transcranial Magnetic Stimulation/methods*
;
Depressive Disorder, Major/physiopathology*
;
Neuronal Plasticity/physiology*
;
Brain/physiopathology*
9.Curcumae Rhizoma: An anti-cancer traditional Chinese medicine.
Yu LUO ; Lin ZHU ; Zhengyu REN ; Jian XIAO ; Erwei HAO ; Jiahong LU ; Jinmin ZHAO ; Chun YAO ; Yitao WANG ; Hua LUO
Chinese Herbal Medicines 2025;17(3):428-447
Curcumae Rhizoma, derived from the rhizome of Curcuma phaeocaulis, Curcuma kwangsiensis and Curcuma wenyujin, was called Ezhu in China. In the past, Curcumae Rhizoma extracts were obtained through water decoction or alternative methods, which showed significant anti-cancer effects. However, the mixed extracts contain various compound components of Curcumae Rhizoma, leading to an ambiguous mechanism of action for Curcumae Rhizoma extracts anti-cancer. Contemporary researchers have extracted the chemical components of Curcumae Rhizoma separately for experimental verification of its active ingredients in the anti-cancer field. Numerous studies demonstrated that curcumol, germacrone, β-elemene, and curcumin in Curcumae Rhizoma extracts have significant governing effects in anti-cancer activities. Pharmacological studies have shown that Curcumae Rhizoma suppresses cancer cell proliferation, invasion, and migration, triggering apoptosis and regulating cellular autophagy to achieve anticancer effects. Here, we summarized the research progress of Curcumae Rhizoma on anti-cancer effects from 2013 to 2022, aiming to explore the deeper molecular mechanisms of Curcumae Rhizoma's active components in cancer treatment.
10.Shufeng Jiedu Granule against mild COVID-19: Protocol of the randomized, double-blind, placebo-controlled, multi-center heal-COVID phase III study.
Li YANG ; Thomas FRIEDEMANN ; Jun PAN ; Xiangyu LI ; Fuxiang WANG ; Yuanlong LIN ; Qiang ZHU ; Sven SCHRÖDER ; Qingsong LIU ; Hongzhou LU
Chinese Herbal Medicines 2025;17(3):601-608
OBJECTIVE:
Since Omicron will likely persist, this trial evaluates the safety and efficacy of Shufeng Jiedu Granule (SFJDG) for mild Omicron infection, aims at finding new therapies especially for home-treated patients.
METHODS:
This randomized, double-blind, placebo-controlled, multi-center phase III trial involves 844 patients, divided into a treatment group (422) and control group (422). Participants will receive SFJDG or placebo for 7 d (1.2 g/bag, 2 bags, 3 times/d). Hospital evaluations will be done on days 1 and 8, with telephone assessments on days 3 and 5. Follow-up continues on days 10 and 14. Diary cards will track symptom scores and safety data. The primary outcome is the time to sustained clinical recovery from corona virus disease 2019 (COVID-19) symptoms. An interim analysis will occur after 70 % of patients complete follow-up, with Type I error correction (α1 = 0.015) at interim analysis based on O'Brien-Fleming-type cumulative error spending function.
RESULTS:
This phase III trial evaluates the efficacy and safety of SFJDG for mild COVID-19, focusing on real-world applicability for home-managed patients. The study's randomized, double-blind, placebo-controlled design ensures methodological rigor, while its comprehensive outcome measures address both symptom recovery and treatment safety. By emphasizing symptom resolution and recovery time, the trial aligns with the clinical priorities for managing mild cases of COVID-19. The findings could offer valuable insights into SFJDG's role in improving patient outcomes and addressing gaps left by existing antiviral therapies, particularly in symptom management.
CONCLUSION
The global risk assessment remains high due to the ongoing virulence of SARS-CoV-2 Omicron sub-lineages. This Phase III study adopts a robust methodology to investigate SFJDG as a treatment for mild COVID-19 as well as it's effectiveness and safety. Furthermore, this study aim to provide sufficient scientific evidence for the market registration of SFJDG especially for home-treated patients. If successful, SFJDG could be a meaningful addition to therapeutic options for mild infections, supporting public health strategies in managing the ongoing impact of SARS-CoV-2.

Result Analysis
Print
Save
E-mail