1.Effect and mechanism of bumetanide on lung injury in chronic obstructive pulmonary disease model rats
Yu LEI ; Jing LU ; Wenjuan HE ; Jiaying GU ; Dengfeng ZHOU
China Pharmacy 2025;36(8):939-944
OBJECTIVE To investigate the effect and mechanism of bumetanide on lung injury in chronic obstructive pulmonary disease (COPD) model rats. METHODS COPD rat model was induced by lipopolysaccharide, and they were randomly divided into model group (COPD group), bumetanide low-dose and high-dose groups (Bumetanide-L group, Bumetanide-H group), bumetanide high-dose+Yes-associated protein/transcriptional coactivator containing PDZ-binding motif (YAP/TAZ) signaling pathway activator group (Bumetanide-H+PY-60 group), with 12 rats in each group. Another 12 normal rats were selected as normal control group (Control group). Thirty minutes before modeling, bumetanide/normal saline was inhaled or/and PY-60/ normal saline was injected into the tail vein. On the next day after the completion of modeling and drug administration, the pulmonary function index of the rats in each group was measured [forced expiratory volume in 0.3 seconds (FEV0.3), forced vital capacity (FVC), peak expiratory flow (PEF), FEV0.3/FVC]. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β in bronchoalveolar lavage fluid (BALF) were determined; the pathological morphology of lung tissue and degree of pulmonary fibrosis were observed. The expression levels of transforming growth factor- β (TGF- β), α -smooth muscle actin (α-SMA) and TAZ protein as well as the phosphorylation of YAP protein in lung tissues were detected. RESULTS Compared with COPD group, the pathological injury of lung tissue in Bumetanide-L and Bumetanide-H groups was alleviated; the exfoliation of lung epithelial cells, tube wall thickening and the degree of pulmonary fibrosis were alleviated; inflammatory cell infiltration was reduced, and blue collagen deposition was reduced; FEV0.3, FVC, FEV0.3/FVC and PEF were significantly increased, while the lung injury score, levels of TNF-α, IL-6, IL-1β, expression levels of TGF-β, α-SMA and TAZ protein and the phosphorylation of YAP protein were significantly decreased (P<0.05). PY-60 could significantly reverse the improvement effects of bumetanide on above indexes (P<0.05). CONCLUSIONS Bumetanide can alleviate lung injury, inflammatory response and pulmonary fibrosis in COPD rats, and its mechanism is related to inhibiting YAP/TAZ signaling pathway.
2.Therapeutic Effect of Cranial Painkiller Pills' Extract Powder in Treatment of Trigeminal Neuralgia Induced by Injection of Talci Pulvis into Infraorbital Foramen of Model Rats Based on OTULIN-regulated Neuroinflammation
Shuran LI ; Xinwei WANG ; Jing SUN ; Dan XIE ; Ronghua ZHAO ; Lei BAO ; Zihan GENG ; Qiyue SUN ; Jingsheng ZHANG ; Yaxin WANG ; Xihe CUI ; Xinying LI ; Bing HAN ; Tianjiao LU ; Xiaolan CUI ; Liying LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):21-28
ObjectiveThis paper aims to verify the therapeutic effect of Cranial Painkiller pills' extract powder prepared by the new process on the rat's trigeminal neuralgia model caused by infraorbital injection of Talci Pulvis, evaluate its potential clinical application value, and compare the therapeutic effect with that of Cranial Painkiller granules, so as to provide data support for the application of the Cranial Painkiller pills' extract powder and precise treatment. MethodsThe rat's trigeminal neuralgia model was constructed by infraorbital injection of Talci Pulvis, and the rats were randomly divided into the normal group, model group, carbamazepine group (60 mg·kg-1), Cranial Painkiller granules group (2.70 g·kg-1), and low, medium, and high dosage groups of Cranial Painkiller pills' extract powder (1.35, 2.70, 5.40 g·kg-1) according to the basal mechanical pain thresholds, and there were 10 rats in each group. The drug was administered by gavage to each group 2 h after modeling, and distilled water was given by gavage to the normal and model groups under the same conditions once a day for 10 d. Von Frey brushes were used to measure mechanical pain thresholds in rats. Hematoxylin-eosin (HE) staining was used to detect pathological changes in the trigeminal ganglion, and enzyme-linked immunosorbent assay (ELISA) was used to detect the inflammatory factors interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) levels in rat serum, as well as neuropeptide substance P (SP) and β-endorphin (β-EP) levels in rat brain tissue. Western blot technique was used to detect the levels of NLRP3, ASC, Caspase-1, and OTULIN proteins in rat brain tissue. ResultsCompared with the normal group, the pain threshold of rats in the model group showed a continuous significant decrease (P<0.01). The pathological damage of brain tissue was significant (P<0.01), and the inflammatory levels of IL-1, IL-6, IL-8, and TNF-α in serum were significantly elevated (P<0.01). The level of the SP in the brain tissue was significantly elevated (P<0.01), and the level of β-EP was significantly reduced (P<0.01), while the level of OTULIN was significantly reduced, and NLRP3, ASC, and Caspase-1 protein levels were significantly elevated (P<0.01). After administration of the drug, compared with the model group, the pain threshold of each dose group of the Cranial Painkiller pills' extract powder and the Cranial Painkiller granules group significantly increased (P<0.01). The inflammatory levels of IL-1, IL-6, IL-8, and TNF-α and SP levels significantly decreased (P<0.01), and the β-EP levels were significantly elevated (P<0.01), while the levels of OTULIN protein were significantly elevated (P<0.05, P<0.01), and the levels of NLRP3, ASC proteins were decreased (P<0.01)in high dose Cranial Painkiller pills' extract powder. Meanwhile, compared with those in the model group, the trigeminal ganglion lesions of rats in the Cranial Painkiller pills' extract powder and Cranial Painkiller granules groups showed different degrees of improvement (P<0.05, P<0.01). ConclusionThe Cranial Painkiller pills' extract powder has significant therapeutic effects on the rat model of trigeminal neuralgia induced by infraorbital injection of Talci Pulvis, and its mechanism is related to the improvement of OTULIN-regulated neuroinflammation.
3.Therapeutic Effect of Cranial Painkiller Pills' Extract Powder in Treatment of Trigeminal Neuralgia Induced by Injection of Talci Pulvis into Infraorbital Foramen of Model Rats Based on OTULIN-regulated Neuroinflammation
Shuran LI ; Xinwei WANG ; Jing SUN ; Dan XIE ; Ronghua ZHAO ; Lei BAO ; Zihan GENG ; Qiyue SUN ; Jingsheng ZHANG ; Yaxin WANG ; Xihe CUI ; Xinying LI ; Bing HAN ; Tianjiao LU ; Xiaolan CUI ; Liying LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):21-28
ObjectiveThis paper aims to verify the therapeutic effect of Cranial Painkiller pills' extract powder prepared by the new process on the rat's trigeminal neuralgia model caused by infraorbital injection of Talci Pulvis, evaluate its potential clinical application value, and compare the therapeutic effect with that of Cranial Painkiller granules, so as to provide data support for the application of the Cranial Painkiller pills' extract powder and precise treatment. MethodsThe rat's trigeminal neuralgia model was constructed by infraorbital injection of Talci Pulvis, and the rats were randomly divided into the normal group, model group, carbamazepine group (60 mg·kg-1), Cranial Painkiller granules group (2.70 g·kg-1), and low, medium, and high dosage groups of Cranial Painkiller pills' extract powder (1.35, 2.70, 5.40 g·kg-1) according to the basal mechanical pain thresholds, and there were 10 rats in each group. The drug was administered by gavage to each group 2 h after modeling, and distilled water was given by gavage to the normal and model groups under the same conditions once a day for 10 d. Von Frey brushes were used to measure mechanical pain thresholds in rats. Hematoxylin-eosin (HE) staining was used to detect pathological changes in the trigeminal ganglion, and enzyme-linked immunosorbent assay (ELISA) was used to detect the inflammatory factors interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) levels in rat serum, as well as neuropeptide substance P (SP) and β-endorphin (β-EP) levels in rat brain tissue. Western blot technique was used to detect the levels of NLRP3, ASC, Caspase-1, and OTULIN proteins in rat brain tissue. ResultsCompared with the normal group, the pain threshold of rats in the model group showed a continuous significant decrease (P<0.01). The pathological damage of brain tissue was significant (P<0.01), and the inflammatory levels of IL-1, IL-6, IL-8, and TNF-α in serum were significantly elevated (P<0.01). The level of the SP in the brain tissue was significantly elevated (P<0.01), and the level of β-EP was significantly reduced (P<0.01), while the level of OTULIN was significantly reduced, and NLRP3, ASC, and Caspase-1 protein levels were significantly elevated (P<0.01). After administration of the drug, compared with the model group, the pain threshold of each dose group of the Cranial Painkiller pills' extract powder and the Cranial Painkiller granules group significantly increased (P<0.01). The inflammatory levels of IL-1, IL-6, IL-8, and TNF-α and SP levels significantly decreased (P<0.01), and the β-EP levels were significantly elevated (P<0.01), while the levels of OTULIN protein were significantly elevated (P<0.05, P<0.01), and the levels of NLRP3, ASC proteins were decreased (P<0.01)in high dose Cranial Painkiller pills' extract powder. Meanwhile, compared with those in the model group, the trigeminal ganglion lesions of rats in the Cranial Painkiller pills' extract powder and Cranial Painkiller granules groups showed different degrees of improvement (P<0.05, P<0.01). ConclusionThe Cranial Painkiller pills' extract powder has significant therapeutic effects on the rat model of trigeminal neuralgia induced by infraorbital injection of Talci Pulvis, and its mechanism is related to the improvement of OTULIN-regulated neuroinflammation.
4.Exploration and application of pyrolysis in production of fuel gas from traditional Chinese medicine solid waste under "dual carbon" goals.
Ying-Lei LU ; Xu LONG ; Ke-Ying WANG ; Jing-Li LIU ; Yan-Lei ZHANG ; Yu-Ping TANG
China Journal of Chinese Materia Medica 2025;50(6):1437-1448
Traditional Chinese medicine(TCM) solid waste is characterized by widespread availability, renewability, and substantial production volume. In the context of the "dual carbon" goals, the pyrolysis of TCM solid waste for producing fuel gas for recycling in pharmaceutical production has emerged as a crucial strategy for optimizing the energy structure in the TCM industry and developing renewable energy. This paper comprehensively reviews both internal and external factors that influence the pyrolysis of TCM solid waste. Internal factors encompass moisture content, particle size, ash content, and the morphology of the raw materials, while external factors include pyrolysis conditions, equivalence ratios, types of gasifiers, and gasifying agents. Furthermore, this paper details the challenges associated with the pyrolysis of TCM solid waste, such as the dispersion of feedstocks, the diversity of resources, the complexity of the pyrolysis process, and the variations in gasifier performance. Finally, this paper proposes measures to address these challenges. This paper aims to provide insights into the development of a circular economy for TCM resources and the advancement of low-carbon energy utilization in the TCM industry.
Pyrolysis
;
Carbon/chemistry*
;
Medicine, Chinese Traditional
;
Solid Waste/analysis*
;
Drugs, Chinese Herbal/chemistry*
;
Gases/chemistry*
5.Astrocyte FGF7/FGFR2 autocrine signaling mediates neuroinflammation and promotes MPTP-induced degeneration of dopaminergic neurons.
Xin SUN ; Yueping WANG ; Yajie ZHANG ; Ruixue HAN ; Min WANG ; Jing ZHANG ; Ting SUN ; Yang LIU ; Gang HU ; Lei CAO ; Ming LU
Acta Pharmaceutica Sinica B 2025;15(9):4730-4750
Reactive astrocytes, which exhibit a correlation with the degeneration of dopaminergic neurons, are present in a considerable number during the progression of Parkinson's disease (PD). However, the underlying factors shaping astrocyte reactivity and neuroinflammation in PD remain inadequately elucidated. Here, we demonstrate that fibroblast growth factor 7 (FGF7)/FGF receptor 2 (FGFR2) autocrine signaling intensifies astrocyte reactivity and inflammation. Genetic deletion of Arrb2, β-Arrestin2 encoding gene, led to escalated astrocyte reactivity in MPTP-treated mice, which was further substantiated in astrocyte-specific Arrb2 knockdown mice. RNA sequencing profiling of Arrb2 knockout astrocytes identified Fgf7 as a critical effector of astrocyte reactivity. Subsequently, conditional knockdown of Fgf7 and its receptor Fgfr2 in astrocytes elicited advantageous effects for MPTP-treated mice by restraining the inflammatory phenotypic transition of reactive astrocytes. Furthermore, deletion of astrocytic Fgf7 mitigated MPTP-induced pathology in Arrb2 knockout mice. Mechanistically, STAT1 was distinguished as the transcription factor suppressing Fgf7 expression, while β-Arrestin2 counteracted the proteasomal degradation of STAT1 by binding to RNF220, an E3 ubiquitin ligase for STAT1. More importantly, selectively engaging dopamine D2 receptor (Drd2)/β-Arrestin2-biased signaling using the agonist UNC9995 exhibited therapeutic potential in MPTP-treated mice via moderation of astrocytic FGF7 production, thereby restoring balance in astrocyte reactivity. Collectively, our study bridges a crucial knowledge gap by elucidating the novel functions of FGF family members within the central nervous system, particularly within the context of PD. The autocrine signaling of FGF7/FGFR2 represents a novel mechanism and a potential druggable target for modulating astrocyte-derived inflammation.
6.Developing a polygenic risk score for pelvic organ prolapse: a combined risk assessment approach in Chinese women.
Xi CHENG ; Lei LI ; Xijuan LIN ; Na CHEN ; Xudong LIU ; Yaqian LI ; Zhaoai LI ; Jian GONG ; Qing LIU ; Yuling WANG ; Juntao WANG ; Zhijun XIA ; Yongxian LU ; Hangmei JIN ; Xiaowei ZHANG ; Luwen WANG ; Juan CHEN ; Guorong FAN ; Shan DENG ; Sen ZHAO ; Lan ZHU
Frontiers of Medicine 2025;19(4):665-674
Pelvic organ prolapse (POP), whose etiology is influenced by genetic and clinical risk factors, considerably impacts women's quality of life. However, the genetic underpinnings in non-European populations and comprehensive risk models integrating genetic and clinical factors remain underexplored. This study constructed the first polygenic risk score (PRS) for POP in the Chinese population by utilizing 20 disease-associated variants from the largest existing genome-wide association study. We analyzed a discovery cohort of 576 cases and 623 controls and a validation cohort of 264 cases and 200 controls. Results showed that the case group exhibited a significantly higher PRS than the control group. Moreover, the odds ratio of the top 10% risk group was 2.6 times higher than that of the bottom 10%. A high PRS was significantly correlated with POP occurrence in women older than 50 years old and in those with one or no childbirths. As far as we know, the integrated prediction model, which combined PRS and clinical risk factors, demonstrated better predictive accuracy than other existing PRS models. This combined risk assessment model serves as a robust tool for POP risk prediction and stratification, thereby offering insights into individualized preventive measures and treatment strategies in future clinical practice.
Humans
;
Female
;
Pelvic Organ Prolapse/epidemiology*
;
Middle Aged
;
Risk Assessment/methods*
;
China/epidemiology*
;
Multifactorial Inheritance
;
Aged
;
Risk Factors
;
Genome-Wide Association Study
;
Genetic Predisposition to Disease
;
Case-Control Studies
;
Adult
;
Polymorphism, Single Nucleotide
;
Genetic Risk Score
;
East Asian People
7.Environmental Temperature and the Risk of Hand, Foot, and Mouth Disease Transmission in the Yangtze River Region of China.
Yan Qing YANG ; Min CHEN ; Jin LI ; Kai Qi LIU ; Xue Yan GUO ; Xin XU ; Qian LIANG ; Xing Lu WU ; Su Wen LEI ; Jing LI
Biomedical and Environmental Sciences 2025;38(3):290-302
OBJECTIVE:
To assess health equity in the Yangtze River region to improve understanding of the correlation between hand, foot, and mouth disease (HFMD) and socioeconomic factors.
METHODS:
From 2014-2016, data on HFMD incidence, population statistics, economic indicators, and meteorology from 26 cities along the Yangtze River were analyzed. A multi-city random-effects meta-analysis was performed to study the relationship between temperature and HFMD transmission, and health equity was assessed with respect to socio-economic impact.
RESULTS:
Over the study period, 919,458 HFMD cases were reported, with Shanghai (162,303) having the highest incidence and Tongling (5,513) having the lowest. Males were more commonly affected (male-to-female ratio, 1.49:1). The exposure-response relationship had an M-shaped curve, with two HFMD peaks occurring at 4 °C and 26 °C. The relative risk had two peaks at 1.30 °C (1.834, 95% CI: 1.204-2.794) and 31.4 °C (1.143, 95% CI: 0.901-1.451), forming an M shape, with the first peak higher than the second. The most significant impact of temperature on HFMD was observed between -2 °C and 18.1 °C. The concentration index (0.2463) indicated moderate concentration differences, whereas the Theil index (0.0418) showed low inequality in distribution.
CONCLUSION
The incidence of HFMD varied across cities, particularly with changes in temperature. Economically prosperous areas showed higher risks, indicating disparities. Targeted interventions in these areas are crucial for mitigating the risk of HFMD.
Female
;
Humans
;
Male
;
China/epidemiology*
;
Cities/epidemiology*
;
Hand, Foot and Mouth Disease/transmission*
;
Incidence
;
Risk Factors
;
Temperature
8.Effect of low-concentration benzene, toluene, and xylene exposure on blood pressure of workers in a petroleum refining enterprise
Bingxian ZHOU ; Qisheng WU ; Shiheng FAN ; Zhuna SU ; Jianye PENG ; Chunyun LU ; Nengde ZHANG ; Lei JIN ; De´e YU ; Jing ZHANG
Journal of Environmental and Occupational Medicine 2024;41(9):1012-1019
Background Workers engaged in benzene-exposed or benzene-containing solvent-exposed operations in China are predominantly subjected to a low concentration of benzene series compounds, and prolonged exposure to low concentrations of benzene, toluene, and xylene (BTX) may have implications for blood pressure. Objective To investigate the influence of low-concentration BTX exposure on the blood pressure of workers, aiming to provide a basis for enterprises to devise associated health management strategies to mitigate the occurrence of hypertension among workers exposed to low concentrations of BTX. Methods Using a cross-sectional design, 884 workers from a petroleum refining enterprise in Hainan who participated in an occupational health examination in 2022 were selected as the study population, and were divided into an exposure group of 649 workers and a control group of 235 workers based on their reporting of BTX exposure or not. Data on workplace BTX concentrations and health examinations of the study subjects were collected and questionnaires were administered. In addition, S-phenylmercapturic acid (S-PMA), hippuric acid (HA), and methyl hippuric acid (MHA, including the three isomers 2-MHA, 3-MHA, and 4-MHA) were measured in the urine of the workers using high-performance liquid chromatography-tandem triple quadrupole mass spectrometry to assess internal BTX burden. The effects of low-concentration BTX exposure on blood pressure were analyzed. Results In 2022, the concentrations of benzene, toluene, and xylene of all monitoring points did not exceeded the national limits by either time-weighted average (TWA) or short-term exposure limit (STEL), indicating low-concentration BTX exposure. Regarding the internal burden of BTX, the concentrations of benzene metabolite S-PMA, toluene metabolite HA, and xylene metabolites 3-MHA and 4-MHA in the urine samples in the exposure group were higher than those in the control group (P < 0.05). The correlation analysis showed a positive correlation between urinary S-PMA concentration and diastolic blood pressure in the workers (r=0.265, P < 0.05). Differences in systolic and diastolic blood pressure distributions were statistically significant among workers grouped by sex, age, work years, educational levels, monthly income, body mass index (BMI), alcohol use, dietary oil, and types of residential address (P < 0.05). Significant differences in systolic blood pressure distribution were observed among workers by smoking status and levels of labor intensity (P < 0.05). Compared with the control group, the workers in the exposure group exhibited a significant increase in diastolic blood pressure (P < 0.05). The results of multiple linear regression showed that age, sex, and BMI had statistically significant effects on systolic blood pressure (P < 0.05), while age, work years, and BMI had statistically significant effects on diastolic blood pressure (P < 0.05). The systolic blood pressure of age > 35 years, male, overweight and obese workers was significantly higher than that of age ≤ 35 years, female, and underweight workers, and the diastolic blood pressure of age > 35 years, work years > 5 years, and obese workers was higher than age ≤35 years, ≤5 years of service, and underweight workers. Low-concentration BTX exposure was one of the main influencing factors for elevated diastolic blood pressure, and the exposed workers showed a 1.337 mmHg increase in diastolic blood pressure compared to the control group (P < 0.05). Conclusion Low-concentration BTX exposure, work years > 5 years, and obesity may elevate blood pressure among petroleum refininig workers. Regular blood pressure monitoring and enhanced health interventions for this occupational group are warranted.
9.Construction and characterization of lpxC deletion strain based on CRISPR/Cas9 in Acinetobacter baumannii
Zong-ti SUN ; You-wen ZHANG ; Hai-bin LI ; Xiu-kun WANG ; Jie YU ; Jin-ru XIE ; Peng-bo PANG ; Xin-xin HU ; Tong-ying NIE ; Xi LU ; Jing PANG ; Lei HOU ; Xin-yi YANG ; Cong-ran LI ; Lang SUN ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(5):1286-1294
Lipopolysaccharides (LPS) are major outer membrane components of Gram-negative bacteria. Unlike most Gram-negative bacteria,
10.Exploration of Traditional Chinese Medicine Interventions for Inflammation-to-Tumor Transition in Cervical High-Risk Human Papillomavirus Infection from the Perspective of Damp-Heat Accumulation Resulting into Toxin
Yu-Xi MIAO ; Gen-Ping ZENG ; Pei-Yin LI ; Xi-Jing LU ; Song-Ping LUO ; Lei ZENG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(9):2472-2478
Inflammation-to-tumor transition is one of the important mechanisms by which the cervical high-risk human papillomavirus(HR-HPV)infection develops into cervical cancer.Persistent cervical HR-HPV infection is an important cause of cervical cancer,and the focal uncontrolled inflammatory microenvironment caused by persistent cervical HR-HPV infection is the underlying mechanism of cervical cancer.The macroscopic and microscopic pathological process of inflammation-to-tumor transition is consistent with the pathogenesis evolution of damp-heat accumulation resulting into toxin in traditional Chinese medicine(TCM):the accumulation of damp-heat is the driving factor of inflammation-to-tumor transition,long-term retention of damp-heat leading to spleen deficiency and liver depression contributes to the characteristics of pathogenesis evolution,and long-term retention of damp-heat toxin causes the disorder of liver and spleen and then blood stasis accumulates in the cervical orifice,which eventually becomes cancer toxin.The process of inflammation-to-tumor transition caused by persistent cervical HR-HPV infection is due to the pathological factors of damp,heat,deficiency and toxin in TCM.Therefore,the regulation of inflammatory microenvironment caused by persistent cervical HR-HPV infection is the key approach to the prevention and treatment of cervical cancer.For the treatment of cervical cancer,methods of clearing heat and drying dampness,strengthening the spleen and soothing the liver are the key therapies.By intervention with the proper pathogen-eliminating methods and with simultaneous regulation of the interior and exterior,the process of inflammation-to-tumor transition can be interrupted.The exploration of inflammation-to-tumor transition caused by persistent cervical HR-HPV infection from the perspective of damp-heat accumulation resulting into toxin will provide thoughts for the prevention and treatment of cervical cancer with TCM and for Chinese medicine in intervening inflammation-to-tumor transition.

Result Analysis
Print
Save
E-mail