1.Manufacture and mechanical property on zirconia abutments with a titanium base in dental implant restoration
Huan WANG ; Jing LU ; Ying LI ; Maohua MENG ; Jiayu SHU ; Yuncai LUO ; Wenjie LI ; Qiang DONG
Chinese Journal of Tissue Engineering Research 2025;29(10):2171-2177
BACKGROUND:With the development of computer-aided design and computer-aided manufacturing technology,zirconia abutments with a titanium base are widely used in clinic due to its good application advantages,but there are still some problems and a lack of consensus design standards. OBJECTIVE:To review the fabrication methods of Ti-base zirconia abutment,and the effect of abutment connection,emergence design,abutment angle,and bonding on mechanical properties of Ti-base zirconia abutment. METHODS:Relevant literature published from 2010 to 2023 was searched in CNKI and PubMed databases with the search terms"zirconia abutment,titanium base"in Chinese and English,respectively.The search time limit was extended for some classical literature.The relevant literature was obtained through inclusion and exclusion criteria,and 57 eligible documents were included for review. RESULTS AND CONCLUSION:It is recommended that clinicians try to select antirotational titanium bases or rotational titanium bases with a Morse taper connection.Implants should be placed in the correct axial angulation of not more than 15° or with an inclination to the palatal side when using angled zirconia abutments.When a≥30° labial inclination is followed for implant placement,the bite force must be decreased effectively to reduce the risk of mechanical and biological complications of implants,abutments,and prostheses.Ti-base zirconia abutments with a higher gingival height should be selected,and its restorative angle should not exceed 40°.Multilink Hybrid Abutment could be the first choice for extraoral bonding of zirconia abutment to titanium bases.
2.Application of Engineered Exosomes in Tumor-targeted Therapy
Jia-Lu SONG ; Yi-Xin JIN ; Xing-Yu MU ; Yu-Huan JIANG ; Jing WANG
Progress in Biochemistry and Biophysics 2025;52(5):1140-1151
Tumors are the second leading cause of death worldwide. Exosomes are a type of extracellular vesicle secreted from multivesicular bodies, with particle sizes ranging from 40 to 160 nm. They regulate the tumor microenvironment, proliferation, and progression by transporting proteins, nucleic acids, and other biomolecules. Compared with other drug delivery systems, exosomes derived from different cells possess unique cellular tropism, enabling them to selectively target specific tissues and organs. This homing ability allows them to cross biological barriers that are otherwise difficult for conventional drug delivery systems to penetrate. Due to their biocompatibility and unique biological properties, exosomes can serve as drug delivery systems capable of loading various anti-tumor drugs. They can traverse biological barriers, evade immune responses, and specifically target tumor tissues, making them ideal carriers for anti-tumor therapeutics. This article systematically summarizes the methods for exosome isolation, including ultracentrifugation, ultrafiltration, size-exclusion chromatography (SEC), immunoaffinity capture, and microfluidics. However, these methods have certain limitations. A combination of multiple isolation techniques can improve isolation efficiency. For instance, combining ultrafiltration with SEC can achieve both high purity and high yield while reducing processing time. Exosome drug loading methods can be classified into post-loading and pre-loading approaches. Pre-loading is further categorized into active and passive loading. Active loading methods, including electroporation, sonication, extrusion, and freeze-thaw cycles, involve physical or chemical disruption of the exosome membrane to facilitate drug encapsulation. Passive loading relies on drug concentration gradients or hydrophobic interactions between drugs and exosomes for encapsulation. Pre-loading strategies also include genetic engineering and co-incubation methods. Additionally, we review approaches to enhance the targeting, retention, and permeability of exosomes. Genetic engineering and chemical modifications can improve their tumor-targeting capabilities. Magnetic fields can also be employed to promote the accumulation of exosomes at tumor sites. Retention time can be prolonged by inhibiting monocyte-mediated clearance or by combining exosomes with hydrogels. Engineered exosomes can also reshape the tumor microenvironment to enhance permeability. This review further discusses the current applications of exosomes in delivering various anti-tumor drugs. Specifically, exosomes can encapsulate chemotherapeutic agents such as paclitaxel to reduce side effects and increase drug concentration within tumor tissues. For instance, exosomes loaded with doxorubicin can mitigate cardiotoxicity and minimize adverse effects on healthy tissues. Furthermore, exosomes can encapsulate proteins to enhance protein stability and bioavailability or carry immunogenic cell death inducers for tumor vaccines. In addition to these applications, exosomes can deliver nucleic acids such as siRNA and miRNA to regulate gene expression, inhibit tumor proliferation, and suppress invasion. Beyond their therapeutic applications, exosomes also serve as tumor biomarkers for early cancer diagnosis. The detection of exosomal miRNA can improve the sensitivity and specificity of diagnosing prostate and pancreatic cancers. Despite their promising potential as drug delivery systems, challenges remain in the standardization and large-scale production of exosomes. This article explores the future development of engineered exosomes for targeted tumor therapy. Plant-derived exosomes hold potential due to their superior biocompatibility, lower toxicity, and abundant availability. Furthermore, the integration of exosomes with artificial intelligence may offer novel applications in diagnostics, therapeutics, and personalized medicine.
3.Anti-atherosclerosis Effect and Mechanism of Siegesbeckiae Herba Water Decoction via Regulation of NF-κB Signaling Pathway
Tengyue WANG ; Mingyue ZHAO ; Xiaonan YUE ; Yuan CHEN ; Changqing LU ; Huan WANG ; Kaifang FAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):106-114
ObjectiveTo investigate the therapeutic effect of Siegesbeckiae Herba water decoction (SWD) at different doses on atherosclerosis (AS) in a mouse model induced by a high-fat diet and analyze its potential mechanism of action. MethodsThirty-six male ApoE-/- mice were randomly divided into six groups: blank control group, model group, low-dose, medium-dose, and high-dose SWD groups, and positive control group. Firstly, the AS mouse model was created by feeding mice a high-fat diet. After successful modeling, the low-, medium-, and high-dose SWD groups were intragastrically administered with SWD at 0.65, 1.3, 2.6 g·kg-1, respectively. The positive control group was intragastrically administered with 30 mg·kg-1 of atorvastatin calcium aqueous solution, while the blank and model groups received an equal volume of 0.9% sodium chloride solution via oral gavage, all administered for 12 weeks. During the administration period, the general condition of the mice was observed and recorded daily. Before sampling, color Doppler ultrasound was performed to observe the pathological changes in atherosclerotic plaques in the aortic wall of mice. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in aortic tissue in mice, and oil red O staining was used to detect the atherosclerotic plaque area in the aorta. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum lipid indices and the levels of interleukins (IL-1β, IL-4, IL-6, and IL-10) and tumor necrosis factor-α (TNF-α) in mice. Protein expression levels of IKKα, IKKβ, and NF-κB p65 in mouse aortic tissue were detected by Western blot. ResultsCompared with the blank control group, the model group showed a significant increase in body weight. The results of color Doppler ultrasound showed enhanced vascular wall echo, suggesting the presence of atherosclerotic plaques. HE staining showed foam cell aggregation, fibrous connective tissue proliferation, and vascular intima injury in the aortic tissue. Oil red O staining showed a significant increase in the plaque area in the aortic tissue (P<0.01). ELISA results indicated significantly elevated levels of IL-1β, IL-6, TNF-α, total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) in mouse serum (P<0.01), as well as significantly decreased levels of IL-4, IL-10, and high-density lipoprotein (HDL) (P<0.01). Western blot results showed that the expression of IKKα, IKKβ, and NF-κB p65 in mouse aortic tissue increased significantly (P<0.01). Compared with those in the model group, mice in the middle- and high-dose SWD groups showed significant weight loss. In the high-dose group, the aortic vascular wall echoes were weakened, and the atherosclerotic plaques were reduced. The aortic lesions of mice in the medium- and high-dose SWD groups were significantly alleviated. The plaque area percentage showed an inverse correlation with the administered dose in all groups treated with SWD (P<0.05). In the medium-dose SWD group, serum levels of IL-1β, IL-6, TNF-α, TC, TG, and LDL were significantly decreased (P<0.05, P<0.01), while those of IL-4 and IL-10 were significantly increased (P<0.01). In the high-dose SWD group, levels of IL-1β, IL-6, TNF-α, TC, TG, and LDL were significantly decreased (P<0.01), while IL-4, IL-10, and HDL were significantly increased (P<0.01). The IKKα and IKKβ expression was significantly decreased in the low-dose SWD group (P<0.05), and IKKα, IKKβ, and NF-κB p65 were significantly decreased in the medium- and high-dose SWD groups (P<0.05, P<0.01). ConclusionSWD may exert therapeutic effects on AS by regulating the expression of related inflammatory factors through the NF-κB signaling pathway, thereby reducing inflammation, plaque area, and lipid content in the body.
4.Epidemiological characteristics and spatiotemporal clustering analysis of varicella in Lu'an City in 2005 - 2023
Huan ZHANG ; Bingxin MA ; Yafei CHEN ; Yao WANG ; Fan PAN ; Lei ZHANG ; Kai CHENG ; Ling SHAO ; Wei QIN
Journal of Public Health and Preventive Medicine 2025;36(6):58-61
Objective To analyze the epidemiological characteristics and spatiotemporal clustering of varicella in Lu'an City from 2005 to 2023, and to provide a scientific basis for optimizing varicella prevention and control strategies. Methods Data on varicella cases were collected through the Chinese Center for Disease Control and Prevention Information System. Descriptive epidemiology, temporal trend analysis, seasonal analysis, spatiotemporal clustering analysis, and spatial autocorrelation analysis were conducted using QGIS, JoinPoint, SaTScan and GeoDa software. Results The average annual reported incidence rate of varicella in Lu'an City from 2005 to 2023 was 34.55/100,000, showing a trend of initial increase followed by a decrease. The peak incidence occurred from October to January of the following year (RR=1.97, LLR=1743.95, P=0.001). Students aged 0 to 19 was the primary affected group. Spatiotemporal scan analysis revealed four types of spatiotemporal clusters, with the cluster in Jin'an District from October 2017 to December 2023 being particularly prominent (RR=2.87,LLR=1734.15,P<0.001). Spatial autocorrelation analysis indicated significant clustering of varicella cases in the main urban area (Moran's I=0.216,Z=4.786,P=0.003). Conclusion The incidence of varicella in Lu'an City exhibits distinct seasonal and spatial clustering, and schools and kindergartens in the main urban area are the key to varicella prevention and control. It is necessary to enhance the monitoring of disease outbreaks during peak periods and in key areas, and to increase the two-dose vaccination rate for varicella in areas with case aggregation and among key populations.
5.Evidence gap between the systematic reviews and clinical concerns in acupuncture and moxibustion for frozen shoulder.
Zhen LUO ; Weijuan GANG ; Xiaoyi HU ; Huan CHEN ; Lu WANG ; Wencui XIU ; Tianyu MING ; Xianghong JING
Chinese Acupuncture & Moxibustion 2025;45(11):1673-1680
OBJECTIVE:
To reveal the gap between the evidence of systematic reviews (SRs) and clinical concerns by systematically summarizing the evidence on acupuncture and moxibustion for frozen shoulder and investigating the concerns and needs of clinicians in treatment with acupuncture and moxibustion for this disease.
METHODS:
The articles of SR and Meta-analysis on acupuncture and moxibustion for frozen shoulder were searched from CNKI, Wanfang, VIP, SinoMed, PubMed, EMbase and Cochrane Library, starting from the inception of each database up to December 31st, 2022. Two researchers screened the articles and extracted data independently. Using AMSTAR-2, the methodological quality of the included studies was evaluated. Based on systematic reviews and expert discussion, a questionnaire on clinical concerns of acupuncture and moxibustion for frozen shoulder was developed and distributed to clinicians. The discrepancies between the evidence and clinical concerns were compared from 5 dimensions, including population, interventions, control measures, outcome indicators and review time points.
RESULTS:
The evidence gaps existed between SRs and clinical concerns. In the existing studies, the needs of personalized treatment were not fully considered in terms of different syndromes/patterns of frozen shoulder and stages of illness, the outcome indicators were not employed properly, the time for outcome measurement was vague, the control groups were set up outside of standardization, and the methodological quality was lower.
CONCLUSION
It is suggested that future studies should improve the quality of methodology, lay more consideration to different patient groups, optimize outcome indicators and standardize the setting of control groups, so as to better meet the needs of patients and achieve the best match between evidence and clinicians' needs.
Humans
;
Acupuncture Therapy
;
Bursitis/therapy*
;
Evidence Gaps
;
Moxibustion
;
Systematic Reviews as Topic
;
Meta-Analysis as Topic
6.Granulocyte colony-stimulating factor in neutropenia management after CAR-T cell therapy: A safety and efficacy evaluation in refractory/relapsed B-cell acute lymphoblastic leukemia.
Xinping CAO ; Meng ZHANG ; Ruiting GUO ; Xiaomei ZHANG ; Rui SUN ; Xia XIAO ; Xue BAI ; Cuicui LYU ; Yedi PU ; Juanxia MENG ; Huan ZHANG ; Haibo ZHU ; Pengjiang LIU ; Zhao WANG ; Yu ZHANG ; Wenyi LU ; Hairong LYU ; Mingfeng ZHAO
Chinese Medical Journal 2025;138(1):111-113
7.Pharmacokinetics and tissue distribution of fluorescent-labeled Astragalus polysaccharides in mice.
Xiao-Huan WANG ; Peng-Xin LI ; Ting-Ting GONG ; Yun-Qian LU ; Bo YANG ; Xiang-Tao WANG
China Journal of Chinese Materia Medica 2025;50(7):1959-1968
In this study, the reductive amination method was used to label IR783 on Astragalus polysaccharides(APS) for the first time, which was verified by ultraviolet-visible spectroscopy and infrared spectroscopy. Quantitative analysis methods of APS-IR783 in plasma and various tissue were established using a multifunctional microplate reader. The pharmacokinetics and tissue distribution of APS-IR783 in mice were investigated after a single intravenous injection of 30 mg·kg~(-1) APS-IR783, and pharmacokinetic parameters were calculated using DAS 2.0 software. The results showed that the APS used had a mass fraction of 93.69%, a relative molecular weight of 1.55×10~5, and a polydispersity index(PDI, M_w/M_n) of 1.73, close to a homogeneous polysaccharide. The IR783 labeling yield reached 86.50%, and the content of IR783 in APS-IR783 was 0.72%. After a single intravenous injection of 30 mg·kg~(-1), the pharmacokinetic parameters of APS in mouse plasma were as follows: T_(max) was(0.67±0.26) h; C_(max) was(1 599.29±159.30) mg·L~(-1); T_(1/2α) and T_(1/2β) were(2.29±3.06) h and(0.44±0.05) h, respectively; AUC_(0-t) was(23 398.91±2 907.03) mg·h·L~(-1); AUC_(0-∞) was(27 710.55±3 506.55) mg·h·L~(-1); MRT_(0-∞) was(34.38±12.59) h; CL was 0.001 L·h~(-1)·kg~(-1); V_z was(0.042±0.017) L·kg~(-1). The in vivo biodistribution study demonstrated that the in vivo exposure ratios of APS in different tissue were in the following order: spleen > liver > kidney > lung > heart > small intestine > muscle > large intestine > brain > stomach, where the top five tissue accounted for 87.54% of the total area under the curve(AUC). This study successfully labeled APS with a water-soluble near-infrared fluorescent probe of IR783 for the first time and revealed the pharmacokinetics and tissue distribution of APS in mice. The paper provides detailed in vivo behavior of APS after intravenous injection, which lays the foundation for the development and utilization of APS and related natural medicines.
Animals
;
Mice
;
Polysaccharides/chemistry*
;
Tissue Distribution
;
Astragalus Plant/chemistry*
;
Male
;
Drugs, Chinese Herbal/chemistry*
;
Fluorescent Dyes/pharmacokinetics*
;
Female
8.Effects of human umbilical cord-derived mesenchymal stem cell therapy for cavernous nerve injury-induced erectile dysfunction in the rat model.
Wei WANG ; Ying LIU ; Zi-Hao ZHOU ; Kun PANG ; Jing-Kai WANG ; Peng-Fei HUAN ; Jing-Ru LU ; Tao ZHU ; Zuo-Bin ZHU ; Cong-Hui HAN
Asian Journal of Andrology 2025;27(4):508-515
Stem cell treatment may enhance erectile dysfunction (ED) in individuals with cavernous nerve injury (CNI). Nevertheless, no investigations have directly ascertained the implications of varying amounts of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) on ED. We compare the efficacy of three various doses of HUC-MSCs as a therapeutic strategy for ED. Sprague-Dawley rats (total = 175) were randomly allocated into five groups. A total of 35 rats underwent sham surgery and 140 rats endured bilateral CNI and were treated with vehicles or doses of HUC-MSCs (1 × 10 6 cells, 5 × 10 6 cells, and 1 × 10 7 cells in 0.1 ml, respectively). Penile tissues were harvested for histological analysis on 1 day, 3 days, 7 days, 14 days, 28 days, 60 days, and 90 days postsurgery. It was found that varying dosages of HUC-MSCs enhanced the erectile function of rats with bilateral CNI and ED. Moreover, there was no significant disparity in the effectiveness of various dosages of HUC-MSCs. However, the expression of endothelial markers (rat endothelial cell antigen-1 [RECA-1] and endothelial nitric oxide synthase [eNOS]), smooth muscle markers (alpha smooth muscle actin [α-SMA] and desmin), and neural markers (neurofilament [RECA-1] and neurogenic nitric oxide synthase [nNOS]) increased significantly with prolonged treatment time. Masson's staining demonstrated an increased in the smooth muscle cell (SMC)/collagen ratio. Significant changes were detected in the microstructures of various types of cells. In vivo imaging system (IVIS) analysis showed that at the 1 st day, the HUC-MSCs implanted moved to the site of damage. Additionally, the oxidative stress levels were dramatically reduced in the penises of rats administered with HUC-MSCs.
Male
;
Animals
;
Erectile Dysfunction/metabolism*
;
Rats, Sprague-Dawley
;
Mesenchymal Stem Cell Transplantation/methods*
;
Rats
;
Penis/pathology*
;
Humans
;
Disease Models, Animal
;
Umbilical Cord/cytology*
;
Peripheral Nerve Injuries/complications*
;
Mesenchymal Stem Cells
;
Nitric Oxide Synthase Type III/metabolism*
;
Actins/metabolism*
;
Nitric Oxide Synthase Type I/metabolism*
9.Research Progress of Vagal Nerve Regulation Mechanism in Acupuncture Treatment of Atrial Fibrillation.
Lu-Lu CAO ; Hui-Rong LIU ; Ya-Jie JI ; Yin-Tao ZHANG ; Bing-Quan WANG ; Xiao-Hong XUE ; Pei WANG ; Zhi-Hui LUO ; Huan-Gan WU
Chinese journal of integrative medicine 2025;31(3):281-288
Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. It has a high prevalence and poor prognosis. The application of antiarrhythmic drugs and even surgery cannot completely treat the disease, and there are many sequelae. AF can be classified into the category of "palpitation" in Chinese medicine according to its symptoms. Acupuncture has a significant effect on AF. The authors find that an important mechanism of acupuncture in AF treatment is to regulate the cardiac vagus nerve. Therefore, this article intends to review the distribution and function of vagus nerve in the heart, the application and the regulatroy effect for the treatment of AF.
Atrial Fibrillation/physiopathology*
;
Humans
;
Acupuncture Therapy
;
Vagus Nerve/physiology*
;
Animals
10.Prrx1 promotes mesangial cell proliferation and kidney fibrosis through YAP in diabetic nephropathy.
Liu XU ; Jiasen SHI ; Huan LI ; Yunfei LIU ; Jingyi WANG ; Xizhi LI ; Dongxue REN ; Sijie LIU ; Heng WANG ; Yinfei LU ; Jinfang SONG ; Lei DU ; Qian LU ; Xiaoxing YIN
Journal of Pharmaceutical Analysis 2025;15(10):101247-101247
Mesangial cell proliferation is an early pathological indicator of diabetic nephropathy (DN). Growing evidence highlights the pivotal role of paired-related homeobox 1 (Prrx1), a key regulator of cellular proliferation and tissue differentiation, in various disease pathogenesis. Notably, Prrx1 is highly expressed in mesangial cells under DN conditions. Both in vitro and in vivo studies have demonstrated that Prrx1 overexpression promotes mesangial cell proliferation and contributes to renal fibrosis in db/m mice. Conversely, Prrx1 knockdown markedly suppresses hyperglycemia-induced mesangial cell proliferation and mitigates renal fibrosis in db/db mice. Mechanistically, Prrx1 directly interacts with the Yes-associated protein 1 (YAP) promoter, leading to the upregulation of YAP expression. This upregulation promotes mesangial cell proliferation and exacerbates renal fibrosis. These findings emphasize the crucial role of Prrx1 upregulation in high glucose-induced mesangial cell proliferation, ultimately leading to renal fibrosis in DN. Therefore, targeting Prrx1 to downregulate its expression presents a promising therapeutic strategy for treating renal fibrosis associated with DN.


Result Analysis
Print
Save
E-mail