1.Cost-utility analysis of rezivertinib versus gefitinib as first-line treatment for EGFR mutation-positive advanced non-small cell lung cancer
Xiaowei ZHU ; Tongming ZHU ; Jia YI ; Wenqiang LI ; Piaopiao LU ; Aizong SHEN
China Pharmacy 2026;37(1):55-60
OBJECTIVE To evaluate the cost-effectiveness of rezivertinib versus gefitinib as first-line treatment for epidermal growth factor receptor (EGFR) mutation-positive advanced non-small cell lung cancer (NSCLC) from the perspective of the Chinese healthcare system. METHODS A Markov model was constructed based on the REZOR trial data, with a cycle length of 3 weeks and a study duration of 5 years. Both costs and health outcomes were discounted at an annual rate of 5%. A cost-utility analysis was conducted using 3 times China’s 2024 per capita gross domestic product as the willingness-to-pay (WTP) threshold. The economic differences between the rezivertinib regimen versus the gefitinib regimen were evaluated using the incremental cost- effectiveness ratio (ICER) and incremental net monetary benefit (INMB). Sensitivity and scenario analyses were performed to verify the robustness of the model. RESULTS Compared to the gefitinib regimen, the rezivertinib regimen saved 225 310.47 yuan and gained an additional 0.57 quality- adjusted life years (QALYs), resulting in an ICER of -395 562.80 yuan/QALY, which was much lower than the WTP threshold of this study, indicating that rezivertinib had an absolute economic advantage. The INMB analysis (389 041.26 yuan) further validated this conclusion. One-way and probabilistic sensitivity analyses confirmed the robustness of the model. Scenario analysis, incorporating a 15% reduction in drug prices and adjustments to the utility values for progression free survival and progression disease, yielded consistent results with the base case analysis. CONCLUSIONS Compared to gefitinib, rezivertinib as a first-line treatment for EGFR mutation-positive advanced NSCLC has an absolute economic advantage.
2.The Effect of Zhiqiao Gancao Decoction (枳壳甘草汤) on Intervertebral Disc Nucleus Pulposus Cell Apoptosis and the Hippo-YAP/TAZ Signaling Pathway in Tail Intervertebral Disc Degeneration Model Rats
Zaishi ZHU ; Zeling HUANG ; Junming CHEN ; Bo XU ; Binjie LU ; Hua CHEN ; Xingxing DUAN ; Yuwei LI ; Xiaofeng SHEN
Journal of Traditional Chinese Medicine 2025;66(5):509-517
ObjectiveTo investigate the possible mechanism by which Zhiqiao Gancao Decoction (枳壳甘草汤, ZGD) delays intervertebral disc degeneration (IDD) based on the Hippo-yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling pathway. MethodsA total of 50 SD rats were randomly divided into sham surgery group, model group, low-dose ZGD group, high-dose ZGD group, and high-dose ZGD + inhibitor group, with 10 rats in each group. In the sham surgery group, the rats were pierced in the skin and muscle at the Co6/7/8 segments of the tail with a 21G needle (depth approximately 2 mm) without damaging the intervertebral disc. In the other groups, rats were injected with a 21G needle at the Co6/7/8 segments of the tail to establish an IDD model by piercing the tail intervertebral disc 5 mm. One week after modeling, rats in the low-dose and high-dose ZGD groups were given 6.24 and 12.24 g/(kg·d) of the decoction via gastric gavage, respectively. The high-dose ZGD + inhibitor group was given 12.24 g/(kg·d) of the decoction and an intraperitoneal injection of YAP/TAZ inhibitor Verteporfin 10 mg/kg. The sham surgery and model groups were given 5 ml/(kg·d) of normal saline via gavage. The gavage was given once a day, and the intraperitoneal injection was given every other day. After 4 weeks of continuous intervention, the pathological changes of the tail intervertebral discs were observed using HE staining, Oil Red O-Green staining, and Toluidine Blue staining. Immunohistochemistry was used to detect the expression of aggrecan and MMP3 in the nucleus pulposus. TUNEL fluorescence staining was performed to detect apoptosis in the nucleus pulposus, and the apoptosis rate was calculated. Western blot was used to detect the Hippo-YAP/TAZ signaling pathway, including YAP, phosphorylated YAP (p-YAP), phosphorylated MST1/2 (p-MST1/2), phosphorylated TAZ (p-TAZ) and apoptosis-related proteins, such as Cleaved Caspase 3, P53, Bcl-2 and Bax. ResultsCompared with sham surgery group, the rats in the model group showed significant degenerative changes in the intervertebral disc. The levels of aggrecan, Bcl-2, and YAP proteins in the nucleus pulposus decreased, while the levels of p-MST1/2, p-YAP, p-TAZ, P53, Bax, Cleaved Caspase 3, MMP3 proteins, and the apoptosis rate increased (P < 0.01). Compared with the model group, the drug intervention groups showed partial recovery in intervertebral disc degeneration. The levels of aggrecan, Bcl-2, and YAP proteins increased, while the levels of p-MST1/2, p-YAP, p-TAZ, P53, Bax, Cleaved Caspase 3, MMP3 proteins, and the apoptosis rate decreased (P<0.05 or P<0.01). The high-dose ZGD group showed more significant recovery in intervertebral disc degeneration compared to the low-dose ZGD group, with a decrease in the levels of p-MST1/2, p-YAP, p-TAZ, P53, Bax, Cleaved Caspase 3, MMP3 proteins, and apoptosis rate, and an increase in the levels of aggrecan, Bcl-2, and YAP proteins (P<0.05 or P<0.01). Compared with the high-dose ZGD group, the high-dose ZGD + inhibitor group showed a reduced recovery in intervertebral disc degeneration, with an increase in the levels of p-MST1/2, p-YAP, p-TAZ, P53, Bax, Cleaved Caspase 3, MMP3 proteins, and apoptosis rate, and a decrease in the levels of aggrecan, Bcl-2, and YAP proteins (P<0.05 or P<0.01). ConclusionZGD may delay intervertebral disc degeneration by inhibiting the phosphorylation of YAP in the nucleus pulposus, maintaining the function of the Hippo-YAP/TAZ signaling pathway, and reducing apoptosis of nucleus pulposus cells.
3.Impact factor selection for non-fatal occupational injuries among manufacturing workers by LASSO regression
Yingheng XIAO ; Chunhua LU ; Juan QIAN ; Ying CHEN ; Yishuo GU ; Zeyun YANG ; Daozheng DING ; Liping LI ; Xiaojun ZHU
Journal of Environmental and Occupational Medicine 2025;42(2):133-139
Background As a pillar industry in China, the manufacturing sector has a high incidence of non-fatal occupational injuries. The factors influencing non-fatal occupational injuries in this industry are closely related at various levels, including individual, equipment, environment, and management, making the analysis of these influencing factors complex. Objective To identify influencing factors of non-fatal occupational injuries among manufacturing workers, providing a basis for targeted interventions and surveillance. Methods A total of
4.Distribution characteristics of self-reported diseases and occupational injuries among workers in manufacturing enterprises
Lin ZHANG ; Zhi’an LI ; Yishuo GU ; Juan QIAN ; Chunhua LU ; Jianjian QIAO ; Yong QIAN ; Zeyun YANG ; Xiaojun ZHU
Journal of Environmental and Occupational Medicine 2025;42(2):165-170
Background Diseases severely affect the efficiency of workers. Comorbidity refers to the coexistence of two or more chronic diseases or health problems in the same individual. Previous studies have primarily focused on occupational injuries caused by environmental exposures, while the analysis of the epidemiological characteristics of self-reported diseases and occupational injuries among manufacturing workers has been insufficient. Objective To analyze the distribution of self-reported diseases and occupational injuries among manufacturing workers, the strength of correlation between different diseases, and common disease combinations, and to preliminarily explore the relationship between self-reported diseases and occupational injuries. Methods A cross-sectional survey was conducted to investigate the occupational injuries of
5.Optimization of simmering technology of Rheum palmatum from Menghe Medical School and the changes of chemical components after processing
Jianglin XUE ; Yuxin LIU ; Pei ZHONG ; Chanming LIU ; Tulin LU ; Lin LI ; Xiaojing YAN ; Yueqin ZHU ; Feng HUA ; Wei HUANG
China Pharmacy 2025;36(1):44-50
OBJECTIVE To optimize the simmering technology of Rheum palmatum from Menghe Medical School and compare the difference of chemical components before and after processing. METHODS Using appearance score, the contents of gallic acid, 5-hydroxymethylfurfural (5-HMF), sennoside A+sennoside B, combined anthraquinone and free anthraquinone as indexes, analytic hierarchy process (AHP)-entropy weight method was used to calculate the comprehensive score of evaluation indicators; the orthogonal experiment was designed to optimize the processing technology of simmering R. palmatum with fire temperature, simmering time, paper layer number and paper wrapping time as factors; validation test was conducted. The changes in the contents of five anthraquinones (aloe-emodin, rhein, emodin, chrysophanol, physcion), five anthraquinone glycosides (barbaloin, rheinoside, rhubarb glycoside, emodin glycoside, and emodin methyl ether glycoside), two sennosides (sennoside A, sennoside B), gallic acid and 5-HMF were compared between simmered R. palmatum prepared by optimized technology and R. palmatum. RESULTS The optimal processing conditions of R. palmatum was as follows: each 80 g R. palmatum was wrapped with a layer of wet paper for 0.5 h, simmered on high heat for 20 min and then simmered at 140 ℃, the total simmering time was 2.5 h. The average comprehensive score of 3 validation tests was 94.10 (RSD<1.0%). After simmering, the contents of five anthraquinones and two sennosides were decreased significantly, while those of 5 free anthraquinones and gallic acid were increased to different extents; a new component 5-HMF was formed. CONCLUSIONS This study successfully optimizes the simmering technology of R. palmatum. There is a significant difference in the chemical components before and after processing, which can explain that simmering technology slows down the relase of R. palmatum and beneficiate it.
6.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
7.Modulation of colonic DNA methyltransferase by mild moxibustion and electroacupuncture in ulcerative colitis TET2 knockout mice
Gege FENG ; Yue ZHANG ; Huangan WU ; Lu ZHU ; Hongxiao XU ; Zhe MA ; Yan HUANG
Digital Chinese Medicine 2025;8(1):100-110
Objective:
To investigate the mechanism of in alleviating colonic mucosal inflammation in ten-eleven translocation (TET) protein 2 gene knockout (TET2-/-) mice with ulcerative colitis (UC) by regulating DNA methyltransferase (DNMT) and DNA hydroxymethylase.
Methods:
Male specific pathogen-free (SPF) grade C57BL/6J wild-type (WT) mice (n = 8) and TET2-/- mice (n = 20) were used to establish UC models by freely drinking 3% dextran sulfate sodium solution for 7 d. After UC model validation through histopathological examination in two mice from each type, the remaining mice were divided into four groups (n = 6 in each group): WT model (WT + UC), TET2-/- model (TET2-/- + UC), TET2-/- mild moxibustion (TET2-/- + MM), and TET2-/- electroacupuncture (TET2-/- + EA) groups. TET2-/- + MM group received mild moxibustion on Tianshu (ST25) and Qihai (CV6) for 10 min daily for 7 d. The TET2-/- + EA group also applied electroacupuncture (1 mA, 2/100 Hz) at the same acupoints for 10 min daily for 7 d. The disease activity index (DAI) scores of each group of mice were accessed daily. The colon lengths of mice in groups were measured following intervention. The pathological changes in the colon tissues were observed with hematoxylin and eosin (HE) staining. The concentrations of interleukin (IL)-6, C-C motif chemokine 17 (CCL17), and C-X-C motif chemokine ligand 10 (CXCL10) in serum were detected by enzyme-linked immunosorbent assay (ELISA). The expression of DNMT proteins (DNMT1, DNMT3A, and DNMT3B) in the colon tissues was detected by immunohistochemistry. The expression of 5-methylcytosine (5-mC), 5-hydroxymethylcytosine (5-hmC), histone deacetylase 2 (HDAC2), and DNA hydroxymethylase family proteins (TET 1 and TET3) was detected using immunofluorescence, which also determined the co-localization of TET1 and IL-6 protein.
Results:
Compared with WT + UC group, TET2-/- + UC group exhibited significantly higher DAI scores and shorter colon lengths (P < 0.01). Both mild moxibustion and electroacupuncture significantly decreased DAI scores and ameliorated colon shortening in TET2-/- mice (P < 0.001). Histopathological scores of TET2-/- + UC mice were significantly higher than those of WT + UC group (P < 0.001) and were significantly reduced after both mild moxibustion and electroacupuncture interventions (P < 0.001). Serum levels of IL-6, CCL17, and CXCL10 were significantly elevated in TET2-/- + UC group compared with WT + UC group (P < 0.001). Mild moxibustion significantly reduced IL-6, CCL17, and CXCL10 levels (P < 0.001, P < 0.001, and P < 0.01, respectively), while electroacupuncture also significantly reduced IL-6, CCL17, and CXCL10 levels (P < 0.05, P < 0.01, and P < 0.01, respectively). TET2-/- + UC mice showed increased expression levels of DNMT1, DNMT3A , DNMT3B, and 5-mC (P < 0.05, P < 0.01 and P < 0.001, respectively), with decreased expression levels of TET1, TET3, 5-hmC, and HDAC2 (P < 0.001). Mild moxibustion significantly reduced DNMT1, DNMT3B, and 5-mC levels (P < 0.05, P < 0.01, and P < 0.001, respectively), while increasing expression levels of TET1, TET3, 5-hmC, and HDAC2 (P < 0.001, P < 0.001, P < 0.05, and P < 0.001, respectively). Electroacupuncture significantly decreased 5-mC and DNMT3B levels (P < 0.001 and P < 0.01, respectively) and increased 5-hmC and HDAC2 levels (P < 0.05 and P < 0.001, respectively), but did not significantly affect TET1 and TET3 expression (P > 0.05). Compared with TET2-/- + MM group, TET2-/- + EA group showed significantly higher 5-mC expression (P < 0.001). TET2-/- + UC group exhibited markedly increased IL-6 expression and higher co-localization of TET1 and IL-6 in mucosal epithelium, whereas minimal IL-6 expression was observed in the other groups.
Conclusion
Mild moxibustion and electroacupuncture significantly ameliorate colonic inflammation exacerbated by TET2 deficiency in UC mice via epigenetic modulation. Distinct mechanisms exist between the two interventions: mild moxibustion regulates both DNMT and hydroxymethylase, whereas electroacupuncture primarily affects DNMT.
8.Association between sleep characteristics, physical activity patterns with depressive and anxiety symptoms in college students
Chinese Journal of School Health 2025;46(4):552-557
Objective:
To explore the relationship between sleep characteristics, physical activity patterns, with depressive and anxiety symptoms in college students, so as to provide reference for student mental health promotion.
Methods:
From September to November 2023, a convenience sampling method was used to select 7 954 college students aged 18-22 years from 9 universities in Shanghai, Hubei, and Jiangxi. Assessments were conducted using the International Physical Activity Questionnaire Short-Form (IPAQ-SF), Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder Scale-7 (GAD-7), and Pittsburgh Sleep Quality Index (PSQI) to evaluate physical activity, depressive and anxiety symptoms, and sleep quality, respectively. Logistic regression analysis was employed to explore the impact of sleep characteristics and physical activity patterns on depressive and anxiety symptoms and their comorbidity among college students.
Results:
The detection rates for depressive symptoms, anxiety symptoms, and comorbid depression and anxiety symptoms were 25.67%, 35.39%, and 23.15%, respectively. Factors such as gender, grade, household registration, parental education level, annual family income, family structure, and dietary habits were all associated with the detection rates of depressive and anxiety symptoms and their comorbidity (χ2=4.41-118.39, P<0.05). Physical activity patterns, sleep duration, sleep quality, and sleepwake characteristics were also associated with the occurrence of depressive and anxiety symptoms and their comorbidity (χ2=9.66-627.70, P<0.05). Logistic regression analysis showed that college students who stayed up late and slept less than 7 had the highest risk of depressive and anxiety symptoms and their comorbidity (OR=1.93, 1.85, 1.88, P<0.05). Compared to regular physical activity patterns, insufficient physical activity patterns were associated with an increased risk of depressive and anxiety symptoms (all OR=1.18, P<0.05). Further stratified analysis results showed that the risk of depression, anxiety and their comorbidity increased in college students who stayed up late and slept less than 7 h, went to bed before midnight and slept less than 7 h, or went to bed before midnight and slept more than 7 h but did not have sufficient physical activity (P<0.05).
Conclusions
Sleep characteristics and physical activity patterns significantly affect depressive and anxiety symptoms in college students. Universities should strengthen sleep management and implement flexible physical activity interventions to help students establish healthy lifestyles.
9.Mechanism of Qishen Yiqi Dropping Pills in regulating gut microbiota and ROS/TXNIP/NLRP3 signaling pathway to improve chronic heart failure in rats
Lifei LYU ; Tingting ZHU ; Fan DING ; Yingdong LU ; Xiangning CUI
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):354-369
Objective:
This study explored the regulatory effects of QiShen Yiqi Dropping Pills (QSYQ) on chronic heart failure (CHF) in rats and their related mechanisms based on the gut microbiota and reactive oxygen species (ROS)/thioredoxin interacting protein (TXNIP)/NOD-like receptor protein 3 (NLRP3) signaling pathway.
Methods:
Sixty-five SPF-grade male SD rats were used to establish a CHF model through subcutaneous multiple injections of isoproterenol (ISO) combined with exhaustion and food control methods. The modeled rats were randomly divided into model, captopril (5.30 mg/kg), and QSYQ low-, medium-, and high-dose groups (0.08, 0.16, and 0.32 g/kg, respectively), with 11 rats per group, plus a blank group of seven rats. The medication groups were given corresponding drugs by gavage, whereas the blank and model groups were administered an equivalent volume of purified water continuously for four weeks. Rat heart function was assessed via transthoracic echocardiography, and myocardial tissue pathology changes were observed through hematoxylin and eosin staining. Serum levels of brain natriuretic peptide (BNP), lipopolysaccharide (LPS), interleukin-18 (IL-18), and interleukin-1β (IL-1β) were measured using an enzyme-linked immunosorbent assay. Automated biochemical analyzers were used to determine creatine kinase (CK), lactate dehydrogenase (LDH), and MB isoenzyme of creatine kinase (CK-MB) content. Myocardial ROS levels were examined using flow cytometry; myocardial TXNIP and NLRP3 expression were detected using immunohistochemistry. Real-time qPCR and Western blotting were used to examine myocardial mRNA and protein expression of TXNIP, NLRP3, apoptosis-related spot-like protein (ASC), caspase-1, and IL-1β, as well as myocardial thioredoxin (Trx) and colonic tight junction proteins (zonula occludens-1, ZO-1), occludin, and claudin-5. Differences in the gut microbiota of the blank, model, and QSYQ high-dose groups were determined using high-throughput 16S rDNA sequencing.
Results:
Compared to the blank group, the model group exhibited significantly reduced left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) (P<0.01); increased serum BNP, LPS, IL-18, and IL-1β (P<0.01) levels; increased CK, LDH, and CK-MB (P<0.01) contents; visible myocardial tissue fibrous edema, wavy appearance, cytoplasmic loosening, round vacuolar degeneration, local tissue fibrous dissolution replaced by proliferative connective tissue, accompanied by inflammatory cell infiltration; significantly increased myocardial ROS levels (P<0.01); and significantly increased myocardial TXNIP and NLRP3 expression (P<0.01). TXNIP, NLRP3, ASC, caspase-1, and IL-1β mRNA and protein expression were significantly increased (P<0.05, P<0.01, respectively), whereas Trx, ZO-1, occludin, and claudin-5 expression was significantly decreased (P<0.01). Compared to the model group, the QSYQ high-dose group showed the most significant changes (P<0.05, P<0.01), with significant increases in LVEF and LVFS (P<0.01); significant decreases in serum BNP, LPS, IL-18, and IL-1β levels (P<0.01); significant reductions in CK, LDH, and CK-MB content (P<0.01); improved myocardial tissue damage; significantly decreased myocardial ROS levels (P<0.01); and significantly reduced myocardial TXNIP and NLRP3 expression (P<0.01). TXNIP, NLRP3, ASC, caspase-1, and IL-1β mRNA and protein expression were significantly decreased (P<0.05, P<0.01), whereas Trx, ZO-1, occludin, and claudin-5 expression was significantly increased (P<0.01). 16S rDNA sequencing results confirmed that the gut microbiota of rats changed after modeling and drug intervention, with significant differences in both α- and β-diversity. Compared to the blank group, at the family level, the abundance of Oscillospiraceae decreased (P<0.05), whereas the abundance of Lactobacillaceae increased. At the species level, the abundance of Segatella copri and Treponema succinifaciens increased, whereas the abundance of Kineothrix alysoides (P<0.05), Ruminococcus callidus, and Prevotellamassilia timonensis decreased. Compared to the model group, at the family level, the abundance of Oscillospiraceae increased (P<0.05) in the QSYQ high-dose group, whereas the abundance of Lactobacillaceae decreased. At the species level, the abundance of Segatella copri and Treponema succinifaciens decreased, whereas the abundance of Kineothrix alysoides increased (P<0.05).
Conclusion
QSYQ can regulate the relative abundance of symbiotic bacteria Kineothrix alysoides in the intestines, reduce serum LPS levels, inhibit the ROS/TXNIP/NLRP3 signaling pathway, and improve inflammatory responses, thereby exerting therapeutic effects on CHF.
10.Experience of WANG Jie in Treating Palpitation by Using the Method of Tonifying the Kidney and Invigorating Blood
Jing TIAN ; Mi DENG ; Luna NIU ; Baoying LI ; Yuling CHA ; Ruowei ZHU ; Lu JING
Journal of Traditional Chinese Medicine 2025;66(10):996-999
To summarize the clinical experience of Professor WANG Jie in treating palpitation using the method of tonifying the kidneys and invigorating blood. It is believed that kidney yang deficiency and heart vessel stasis are the key pathogenesis of palpitation, and it is advocated to treat palpitation by tonifying the kidney and invigorating the blood. Meanwhile,the methods of draining water, dissolving phlegm, and fortifying the spleen to supplement the blood should be applied. For palpitation with kidney yang deficiency and heart vessel stasis with upward water, the treatment could use self-prescribed Bushen Huoxue Lishui Formula (补肾活血利水方); for palpitation with phlegm obstruction in blood vessel, the treatment could use self-prescribed Bushen Huoxue Huatan Formula (补肾活血化痰方); for palpitation with spleen yang deficiency, the treatment could use self-prescribed Bushen Huoxue Jianpi Formula (补肾活血健脾方).


Result Analysis
Print
Save
E-mail