1.Construction of Saccharomyces cerevisiae cell factory for efficient biosynthesis of ferruginol.
Mei-Ling JIANG ; Zhen-Jiang TIAN ; Hao TANG ; Xin-Qi SONG ; Jian WANG ; Ying MA ; Ping SU ; Guo-Wei JIA ; Ya-Ting HU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(4):1031-1042
Diterpenoid ferruginol is a key intermediate in biosynthesis of active ingredients such as tanshinone and carnosic acid.However, the traditional process of obtaining ferruginol from plants is often cumbersome and inefficient. In recent years, the increasingly developing gene editing technology has been gradually applied to the heterologous production of natural products, but the production of ferruginol in microbe is still very low, which has become an obstacle to the efficient biosynthesis of downstream chemicals, such as tanshinone. In this study, miltiradiene was produced by integrating the shortened diterpene synthase fusion protein,and the key genes in the MVA pathway were overexpressed to improve the yield of miltiradiene. Under the shake flask fermentation condition, the yield of miltiradiene reached about(113. 12±17. 4)mg·L~(-1). Subsequently, this study integrated the ferruginol synthase Sm CYP76AH1 and Sm CPR1 to reconstruct the ferruginol pathway and thereby realized the heterologous synthesis of ferruginol in Saccharomyces cerevisiae. The study selected the best ferruginol synthase(Il CYP76AH46) from different plants and optimized the expression of pathway genes through redox partner engineering to increase the yield of ferruginol. By increasing the copy number of diterpene synthase, CYP450, and CPR, the yield of ferruginol reached(370. 39± 21. 65) mg·L~(-1) in the shake flask, which was increased by 21. 57-fold compared with that when the initial ferruginol strain JMLT05 was used. Finally, 1 083. 51 mg·L~(-1) ferruginol was obtained by fed-batch fermentation, which is the highest yield of ferruginol from biosynthesis so far. This study provides not only research ideas for other metabolic engineering but also a platform for the construction of cell factories for downstream products.
Saccharomyces cerevisiae/genetics*
;
Diterpenes/metabolism*
;
Metabolic Engineering
;
Fermentation
;
Abietanes
2.Research progress in effect of traditional Chinese medicine on aerobic glycolysis in colorectal cancer.
Xu MA ; Sheng-Long LI ; Guang-Rong ZHENG ; Da-Cheng TIAN ; Gang-Gang LU ; Jie GAO ; Yu-Qi AN ; Li-Yuan CAO ; Liang LI ; Xiao-Yong TANG
China Journal of Chinese Materia Medica 2025;50(6):1496-1506
Colorectal cancer(CRC) is a common malignant tumor worldwide. Due to the treatment intolerance and side effects, CRC rank the top among various cancers regarding the incidence and mortality rates. Therefore, exploring new therapies is of great significance for the treatment of CRC. Aerobic glycolysis(AEG) plays an important role in the microenvironment formation, proliferation, metastasis, and recurrence of CRC and other tumor cells. It has been confirmed that intervening in the AEG pathway can effectively curb CRC. The active ingredients and compound prescriptions of traditional Chinese medicine(TCM) can effectively inhibit the proliferation, metastasis, and drug resistance and regulate the apoptosis of tumor cells by modulating AEG-associated transport proteins [eg, glucose transporters(GLUT)], key enzymes [hexokinase(HK) and phosphofructokinase(PFK)], key genes [hypoxia-inducible factor 1(HIF-1) and oncogene(c-Myc)], and signaling pathways(MET/PI3K/Akt/mTOR). Accordingly, they can treat CRC, reduce the recurrence, and improve the prognosis of CRC. Although AEG plays a key role in the development and progression of CRC, the specific mechanisms are not yet fully understood. Therefore, this article delves into the intrinsic connection of the targets and mechanisms of the AEG pathway with CRC from the perspective of tumor cell glycolysis and explores how active ingredients(oxymatrine, kaempferol, and dioscin) and compound prescriptions(Quxie Capsules, Jiedu Sangen Decoction, and Xianlian Jiedu Prescription) of TCM treat CRC by intervening in the AEG pathway. Additionally, this article explores the shortcomings in the current research, aiming to provide reliable targets and a theoretical basis for treating CRC with TCM.
Humans
;
Colorectal Neoplasms/genetics*
;
Drugs, Chinese Herbal/therapeutic use*
;
Glycolysis/drug effects*
;
Animals
;
Medicine, Chinese Traditional
;
Signal Transduction/drug effects*
3.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
4.Effects and mechanisms of total flavones of Abelmoschus manihot combined with empagliflozin in attenuating diabetic tubulopathy through multiple targets based on mitochondrial homeostasis and ZBP1-mediated PANoptosis.
Si-Yu CHA ; Meng WANG ; Yi-Gang WAN ; Si-Ping DING ; Yu WANG ; Shi-Yu SHEN ; Wei WU ; Ying-Lu LIU ; Qi-Jun FANG ; Yue TU ; Hai-Tao TANG
China Journal of Chinese Materia Medica 2025;50(13):3738-3753
This study aimed to explore the mechanisms and molecular targets of total flavones of Abelmoschus manihot(TFA) plus empagliflozin(EM) in attenuating diabetic tubulopathy(DT) by targeting mitochondrial homeostasis and pyroptosis-apoptosis-necroptosis(PANoptosis). In the in vivo study, the authors established the DT rat models through a combination of uninephrectomy, administration of streptozotocin via intraperitoneal injections, and exposure to a high-fat diet. Following modeling successfully, the DT rat models received either TFA, EM, TFA+EM, or saline(as a vehicle) by gavage for eight weeks, respectively. In the in vitro study, the authors subjected the NRK52E cells with or without knock-down Z-DNA binding protein 1(ZBP1) to a high-glucose(HG) environment and various treatments including TFA, EM, and TFA+EM. In the in vivo and in vitro studies, The authors investigated the relative characteristics of renal tubular injury and renal tubular epithelial cells damage induced by reactive oxygen species(ROS), analyzed the relative characteristics of renal tubular PANoptosis and ZBP1-mediatted PANoptosis in renal tubular epithelial cells, and compared the relative characteristics of the protein expression levels of marked molecules of mitochondrial fission in the kidneys and mitochondrial homeostasis in renal tubular epithelial cells, respectively. Furthermore, in the network pharmacology study, the authors predicted and screened targets of TFA and EM using HERB and SwissTargetPrediction databases; The screened chemical constituents and targets of TFA and EM were constructed the relative network using Cytoscape 3.7.2 network graphics software; The relative targets of DT were integrated using OMIM and GeneCards databases; The intersecting targets of TFA, EM, and DT were enriched and analyzed signaling pathways by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG) software using DAVID database. In vivo study results showed that TFA+EM could improve renal tubular injury, the protein expression levels and characteristics of key signaling molecules in PANoptosis pathway in the kidneys, and the protein expression levels of marked molecules of mitochondrial fission in the kidneys. And that, the ameliorative effects in vivo of TFA+EM were both superior to TFA or EM. Network pharmacology study results showed that TFA+EM treated DT by regulating the PANoptosis signaling pathway. In vitro study results showed that TFA+EM could improve ROS-induced cell injury, ZBP1-mediatted PANoptosis, and mitochondrial homeostasis in renal tubular epithelial cells under a state of HG, including the protein expression levels of marked molecules of mitochondrial fission, mitochondrial ultrastructure, and membrane potential level. And that, the ameliorative effects in vitro of TFA+EM were both superior to TFA or EM. More importantly, using the NRK52E cells with knock-down ZBP1, the authors found that, indeed, ZBP1 was mediated PANoptosis in renal tubular epithelial cells as an upstream factor. In addition, TFA+EM could regulate the protein expression levels of marked signaling molecules of PANoptosis by targeting ZBP1. In summary, this study clarified that TFA+EM, different from TFA or EM, could attenuate DT with multiple targets by ameliorating mitochondrial homeostasis and inhibiting ZBP1-mediated PANoptosis. These findings provide the clear pharmacological evidence for the clinical treatment of DT with a novel strategy of TFA+EM, which is named "coordinated traditional Chinese and western medicine".
Animals
;
Rats
;
Mitochondria/metabolism*
;
Benzhydryl Compounds/administration & dosage*
;
Glucosides/administration & dosage*
;
Abelmoschus/chemistry*
;
Male
;
Homeostasis/drug effects*
;
Flavones/administration & dosage*
;
Rats, Sprague-Dawley
;
Diabetic Nephropathies/physiopathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
DNA-Binding Proteins/genetics*
;
Humans
;
Apoptosis/drug effects*
5.A convenient research strategy for functional verification of epigenetic regulators during spermatogenesis.
Shan LI ; Ying YUAN ; Ke-Yu ZHANG ; Yi-Dan GUO ; Lu-Tong WANG ; Xiao-Yuan ZHANG ; Shu ZHANG ; Qi YAN ; Rong ZHANG ; Jie CHEN ; Feng-Tang YANG ; Jing-Rui LI
Asian Journal of Andrology 2025;27(2):261-267
Spermatogenesis is a fundamental process that requires a tightly controlled epigenetic event in spermatogonial stem cells (SSCs). The mechanisms underlying the transition from SSCs to sperm are largely unknown. Most studies utilize gene knockout mice to explain the mechanisms. However, the production of genetically engineered mice is costly and time-consuming. In this study, we presented a convenient research strategy using an RNA interference (RNAi) and testicular transplantation approach. Histone H3 lysine 9 (H3K9) methylation was dynamically regulated during spermatogenesis. As Jumonji domain-containing protein 1A (JMJD1A) and Jumonji domain-containing protein 2C (JMJD2C) demethylases catalyze histone H3 lysine 9 dimethylation (H3K9me2), we firstly analyzed the expression profile of the two demethylases and then investigated their function. Using the convenient research strategy, we showed that normal spermatogenesis is disrupted due to the downregulated expression of both demethylases. These results suggest that this strategy might be a simple and alternative approach for analyzing spermatogenesis relative to the gene knockout mice strategy.
Spermatogenesis/physiology*
;
Animals
;
Male
;
Mice
;
Epigenesis, Genetic
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Histones/metabolism*
;
RNA Interference
;
Testis/metabolism*
;
Methylation
;
Mice, Knockout
;
Histone Demethylases
6.Electroacupuncture alleviates behaviors associated with posttraumatic stress disorder by modulating lipocalin-2-mediated neuroinflammation and neuronal activity in the prefrontal cortex.
Yu-Die YANG ; Wen ZHONG ; Ming CHEN ; Qing-Chen TANG ; Yan LI ; Lu-Lu YAO ; Mei-Qi ZHOU ; Neng-Gui XU ; Shuai CUI
Journal of Integrative Medicine 2025;23(5):537-547
OBJECTIVE:
To elucidate the specific mechanisms by which electroacupuncture (EA) alleviates anxiety and fear behaviors associated with posttraumatic stress disorder (PTSD), focusing on the role of lipocalin-2 (Lcn2).
METHODS:
The PTSD mouse model was subjected to single prolonged stress and shock (SPS&S), and the animals received 15 min sessions of EA at Shenmen acupoint (HT7). Behavioral tests were used to investigate the effects of EA at HT7 on anxiety and fear. Western blotting and enzyme-linked immunosorbent assay were used to quantify Lcn2 and inflammatory cytokine levels in the prefrontal cortex (PFC). Additionally, the activity of PFC neurons was evaluated by immunofluorescence and in vivo electrophysiology.
RESULTS:
Mice subjected to SPS&S presented increased anxiety- and fear-like behaviors. Lcn2 expression in the PFC was significantly upregulated following SPS&S, leading to increased expression of the proinflammatory cytokines tumor necrosis factor-α and interleukin-6 and suppression of PFC neuronal activity. However, EA at HT7 inhibited Lcn2 release, reducing neuroinflammation and hypoexcitability in the PFC. Lcn2 overexpression mitigated the effects of EA at HT7, resulting in anxiety- and fear-like behaviors.
CONCLUSION
EA at HT7 can ameliorate PTSD-associated anxiety and fear, and its mechanism of action appears to involve the inhibition of Lcn2-mediated neural activity and inflammation in the PFC. Please cite this article as: Yang YD, Zhong W, Chen M, Tang QC, Li Y, Yao LL, et al. Electroacupuncture alleviates behaviors associated with posttraumatic stress disorder by modulating lipocalin-2-mediated neuroinflammation and neuronal activity in the prefrontal cortex. J Integr Med. 2025; 23(5):537-547.
Electroacupuncture
;
Stress Disorders, Post-Traumatic/metabolism*
;
Animals
;
Lipocalin-2/metabolism*
;
Prefrontal Cortex/physiopathology*
;
Male
;
Mice
;
Neurons/physiology*
;
Disease Models, Animal
;
Fear
;
Behavior, Animal
;
Mice, Inbred C57BL
;
Neuroinflammatory Diseases/metabolism*
;
Anxiety/therapy*
;
Acupuncture Points
7.Discussion of the methodology and implementation steps for assessing the causality of adverse event
Hong FANG ; Shuo-Peng JIA ; Hai-Xue WANG ; Xiao-Jing PEI ; Min LIU ; An-Qi YU ; Ling-Yun ZHOU ; Fang-Fang SHI ; Shu-Jie LU ; Shu-Hang WANG ; Yue YU ; Dan-Dan CUI ; Yu TANG ; Ning LI ; Ze-Huai WEN
The Chinese Journal of Clinical Pharmacology 2024;40(2):299-304
The assessment of adverse drug events is an important basis for clinical safety evaluation and post-marketing risk control of drugs,and its causality assessment is gaining increasing attention.The existing methods for assessing the causal relationship between drugs and the occurrence of adverse reactions can be broadly classified into three categories:global introspective methods,standardized methods,and probabilistic methods.At present,there is no systematic introduction of the operational details of the various methods in the domestic literature.This paper compares representative causality assessment methods in terms of definition and concept,methodological steps,industry evaluation and advantages and disadvantages,clarifies the basic process of determining the causality of adverse drug reactions,and discusses how to further improve the adverse drug reaction monitoring and evaluation system,with a view to providing a reference for drug development and pharmacovigilance work in China.
8.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and
9.ox-LDL Promotes Bidirectional Regulation of Neuronal Apoptosis Through The PCSK9/LRP1 Signaling Pathway
Nai-Qi HE ; Xue-Shan ZHAO ; Qian XU ; Hua-Yu ZHANG ; Zhong REN ; Zhi-Han TANG ; Qiong XIANG ; Lu-Shan LIU
Progress in Biochemistry and Biophysics 2024;51(4):944-958
Obiective Alzheimer’s disease (AD) is a degenerative disease of the central nervous system (CNS) caused by a variety of risk factors. There are various pathological changes, but apoptosis of the neurological meridian cells is one of the most important pathological bases. Hyperlipidemia is a high-risk factor for the development of AD, which can lead to increased levels of oxidized low-density lipoprotein (ox-LDL) in brain tissues. PCSK9 is a protease closely related to lipid metabolism, but studies have shown that it may be related to the development of AD. LRP1 is abundantly expressed in neuronal cells, and it is an important transporter for the clearance of Aβ. There is now a large amount of literature confirming that PCSK9 can induce the degradation of LRP1. PI3K/AKT is an important signaling pathway in vivo, which plays an important role in apoptosis, and there is now a large amount of literature confirming that LRP1 activates the PI3K/AKT pathway, which has an anti-apoptotic effect. So can PCSK9 affect the PI3K/AKT pathway through LRP1 and thus regulate neuronal apoptosis? This deserves further investigation.The aim of this study was to explore the role of PCSK9 in mediating ox-LDL pro-apoptotic neuronal cell death and its mechanism, and then further elaborate the mechanism of hyperlipidemia leading to neurodegenerative diseases such as AD. MethodsFirstly, PC12 cells were treated with different concentrations of ox-LDL (0, 25, 50, 75 and 100 mg/L) for 24 h. Oil red O staining was used to detect lipid accumulation in PC12 cells, Hoechst33258 staining and flow cytometry to detect apoptosis in PC12 cells, ELISA to detect the content of Aβ secreted by PC12, Western blot to detect expression of SREBP2, PCSK9 and LRP1. Then PC12 cells were treated with 75 mg/L ox-LDL for different times (0, 6, 12, 24, 48 h), and Western blot were performed to detect the expression of SREBP2, PCSK9 and LRP1. Finally, after transfecting 100 nmol/L PCSK9 siRNA into PC12 cells for 48 h, PC12 cells were treated with 75 mg/L ox-LDL for 24 h, Hoechst33258 staining and flow cytometry to detect apoptosis rate of PC12 cells, and Western blot to detect PCSK9, LRP1, PI3K, AKT, P-PI3K , P-AKT, NF-κB, Bcl-2, Bax, Caspase-9 and Caspase-3 expression, and ELISA detected Aβ content secreted by PC12 cells. Resultsox-LDL increased lipid accumulation and promoted apoptosis and Aβ secretion in PC12 cells, as well as increasing the expression of SREBP2 and PCSK9 and decreasing the expression of LRP1 in PC12 cells. pCsk9 siRNA could be inhibited through the PI3K/AKT pathway and the NF-κB-Bcl-2/Bax-Caspase-9/3 pathway to inhibit ox-LDL-induced apoptosis in PC12 cells while increasing Aβ secretion in PC12 cells. Conclusionox-LDL plays a bidirectional regulatory role in ox-LDL-induced apoptosis of PC12 cells by inducing an increase in PCSK9 expression and a decrease in LRP1 expression in PC12 cells, which in turn affects different signaling pathways downstream.
10.Discrete element modeling and breakage behavior analysis of oral solid dosage form particles
Lin-xiu LUO ; Tian-bing GUAN ; An-qi LUO ; Zeng LIU ; Yu-ting WANG ; Yan-ling JIANG ; Zheng LU ; Jing-cao TANG ; Shuang-kou CHEN ; Hui-min SUN ; Chuan-yun DAI
Acta Pharmaceutica Sinica 2024;59(4):1057-1066
The breakage pattern of unit particles during the production of oral solid dosage forms (OSD) is closely related to the quality of intermediate or final products. To accurately characterize the particles and study the evolution law of particle breakage, the Bonding model of the discrete element method (DEM) was used to investigate the breakage patterns of model parameters, particle shape and process conditions (loading mode and loading rate) on the dynamic breakage, force-time curve, breakage rate, maximum breakage size ratio and fracture strength of particles. The results showed that the particle breakage force was positively correlated with normal strength and bonded disk scale, negatively correlated with normal stiffness per unit area and tangential stiffness per unit area, and weakly correlated with tangential strength. The particle breakage rate was negatively correlated with the aspect ratio of the particles, and the maximum breakage size ratio was positively correlated with the aspect ratio of the particles; among the three loading modes, the breakage rate of compression breakage model was the largest, the breakage rate of shear breakage model was the second largest, and the breakage rate of wear breakage model was the smallest; the maximum breakage size ratio was positively correlated with the loading rate, the loading mode and the loading rate had no mutual influence on particle breakage rate, but had mutual influence on the maximum breakage size ratio. The research results will provide a theoretical basis for the shift of OSD from batch manufacturing to advanced manufacturing.

Result Analysis
Print
Save
E-mail