1.Dynamics of eosinophil infiltration and microglia activation in brain tissues of mice infected with Angiostrongylus cantonensis
Fanna WEI ; Renjie ZHANG ; Yahong HU ; Xiaoyu QIN ; Yunhai GUO ; Xiaojin MO ; Yan LU ; Jiahui SUN ; Yan ZHOU ; Jiatian GUO ; Peng SONG ; Yanhong CHU ; Bin XU ; Ting ZHANG ; Yuchun CAI ; Muxin CHEN
Chinese Journal of Schistosomiasis Control 2025;37(2):163-175
Objective To investigate the changes in eosinophil counts and the activation of microglial cells in the brain tissues of mice at different stages of Angiostrongylus cantonensis infection, and to examine the role of microglia in regulating the progression of angiostrongyliasis and unravel the possible molecular mechanisms. Methods Fifty BALB/c mice were randomly divided into the control group and the 7-d, 14-d, 21-day and 25-d infection groups, of 10 mice in each group. All mice in infection groups were infected with 30 stage III A. cantonensis larvae by gavage, and animals in the control group was given an equal amount of physiological saline. Five mice were collected from each of infection groups on days 7, 14, 21 d and 25 d post-infection, and 5 mice were collected from the control group on the day of oral gavage. The general and focal functional impairment was scored using the Clark scoring method to assess the degree of mouse neurological impairment. Five mice from each of infection groups were sacrificed on days 7, 14, 21 d and 25 d post-infection, and 5 mice from the control group were sacrificed on the day of oral gavage. Mouse brain tissues were sampled, and the pathological changes of brain tissues were dynamically observed using hematoxylin and eosin (HE) staining. Immunofluorescence staining with eosinophilic cationic protein (ECP) and ionized calcium binding adaptor molecule 1 (Iba1) was used to assess the degree of eosinophil infiltration and the counts of microglial cells in mouse brain tissues in each group, and the morphological parameters of microglial cells (skeleton analysis and fractal analysis) were quantified by using Image J software to determine the morphological changes of microglial cells. In addition, the expression of M1 microglia markers Fcγ receptor III (Fcgr3), Fcγ receptor IIb (Fcgr2b) and CD86 antigen (Cd86), M2 microglia markers Arginase 1 (Arg1), macrophage mannose receptor C-type 1 (Mrc1), chitinase-like 3 (Chil3), and phagocytosis genes myeloid cell triggering receptor expressed on myeloid cells 2 (Trem2), CD68 antigen (Cd68), and apolipoprotein E (Apoe) was quantified using real-time quantitative reverse transcription PCR (RT-qPCR) assay in the mouse cerebral cortex of mice post-infection. Results A large number of A. cantonensis larvae were seen on the mouse meninges surface post-infection, and many neuronal nuclei were crumpled and deeply stained, with a large number of bleeding points in the meninges. The median Clark scores of mouse general functional impairment were 0 (interquartile range, 0), 0 (interquartile range, 0.5), 6 (interquartile range, 1.0), 14 (interquartile range, 8.5) points and 20 (interquartile range, 9.0) points in the control group and the 7-d, 14-d, 21-d and 25-d groups, respectively (H = 22.45, P < 0.01), and the median Clark scores of mouse focal functional impairment were 0 (interquartile range, 0), 2 (interquartile range, 2.5), 7 (interquartile range, 3.0), 18 (interquartile range, 5.0) points and 25 (interquartile range, 6.5) points in the control group and the 7-d, 14-d, 21-d and 25-d groups, respectively (H = 22.72, P < 0.01). The mean scores of mice general and focal functional impairment were all higher in the infection groups than in the control group (all P values < 0.05). Immunofluorescence staining showed a significant difference in the eosinophil counts in mouse brain tissues among the five groups (F = 40.05, P < 0.000 1), and the eosinophil counts were significantly higher in mouse brain tissues in the 14-d (3.08 ± 0.78) and 21-d infection groups (5.97 ± 1.37) than in the control group (1.00 ± 0.28) (both P values < 0.05). Semi-quantitative analysis of microglia immunofluorescence showed a significant difference in the counts of microglial cells among the five groups (F = 17.66, P < 0.000 1), and higher Iba1 levels were detected in mouse brain tissues in 14-d (5.75 ± 1.28), 21-d (6.23 ± 1.89) and 25-d infection groups (3.70 ± 1.30) than in the control group (1.00 ± 0.30) (all P values < 0.05). Skeleton and fractal analyses showed that the branch length [(162.04 ± 34.10) μm vs. (395.37 ± 64.11) μm; t = 5.566, P < 0.05] and fractal dimension of microglial cells (1.30 ± 0.01 vs. 1.41 ± 0.03; t = 5.266, P < 0.05) were reduced in mouse brain tissues in the 21-d infection group relative to the control group. In addition, there were significant differences among the 5 groups in terms of M1 and M2 microglia markers Fcgr3 (F = 48.34, P < 0.05), Fcgr2b (F = 55.46, P < 0.05), Cd86 (F = 24.44, P < 0.05), Arg1 (F = 31.18, P < 0.05), Mrc1 (F = 15.42, P < 0.05) and Chil3 (F = 24.41, P < 0.05), as well as phagocytosis markers Trem2 (F = 21.19, P < 0.05), Cd68 (F = 43.95, P < 0.05) and Apoe (F = 7.12, P < 0.05) in mice brain tissues. Conclusions A. cantonensis infections may induce severe pathological injuries in mouse brain tissues that are characterized by massive eosinophil infiltration and persistent activation of microglia cells, thereby resulting in progressive deterioration of neurological functions.
2.P4HA1 mediates YAP hydroxylation and accelerates collagen synthesis in temozolomide-resistant glioblastoma.
Xueru LI ; Gangfeng YU ; Xiao ZHONG ; Jiacheng ZHONG ; Xiangyu CHEN ; Qinglong CHEN ; Jinjiang XUE ; Xi YANG ; Xinchun ZHANG ; Yao LING ; Yun XIU ; Yaqi DENG ; Hongda LI ; Wei MO ; Yong ZHU ; Ting ZHANG ; Liangjun QIAO ; Song CHEN ; Fanghui LU
Chinese Medical Journal 2025;138(16):1991-2005
BACKGROUND:
Temozolomide (TMZ) resistance is a significant challenge in treating glioblastoma (GBM). Collagen remodeling has been shown to be a critical factor for therapy resistance in other cancers. This study aimed to investigate the mechanism of TMZ chemoresistance by GBM cells reprogramming collagens.
METHODS:
Key extracellular matrix components, including collagens, were examined in paired primary and recurrent GBM samples as well as in TMZ-treated spontaneous and grafted GBM murine models. Human GBM cell lines (U251, TS667) and mouse primary GBM cells were used for in vitro studies. RNA-sequencing analysis, chromatin immunoprecipitation, immunoprecipitation-mass spectrometry, and co-immunoprecipitation assays were conducted to explore the mechanisms involved in collagen accumulation. A series of in vitro and in vivo experiments were designed to assess the role of the collagen regulators prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and yes-associated protein (YAP) in sensitizing GBM cells to TMZ.
RESULTS:
This study revealed that TMZ exposure significantly elevated collagen type I (COL I) expression in both GBM patients and murine models. Collagen accumulation sustained GBM cell survival under TMZ-induced stress, contributing to enhanced TMZ resistance. Mechanistically, P4HA1 directly binded to and hydroxylated YAP, preventing ubiquitination-mediated YAP degradation. Stabilized YAP robustly drove collagen type I alpha 1 ( COL1A1) transcription, leading to increased collagen deposition. Disruption of the P4HA1-YAP axis effectively reduced COL I deposition, sensitized GBM cells to TMZ, and significantly improved mouse survival.
CONCLUSION
P4HA1 maintained YAP-mediated COL1A1 transcription, leading to collagen accumulation and promoting chemoresistance in GBM.
Temozolomide
;
Humans
;
Glioblastoma/drug therapy*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
YAP-Signaling Proteins
;
Hydroxylation
;
Dacarbazine/pharmacology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Collagen/biosynthesis*
;
Collagen Type I/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Antineoplastic Agents, Alkylating/therapeutic use*
3.Therapeutic potential of ion channel modulation in Alzheimer's disease.
Bing HUANG ; Cheng-Min YANG ; Zhi-Cheng LU ; Li-Na TANG ; Sheng-Long MO ; Chong-Dong JIAN ; Jing-Wei SHANG
Acta Physiologica Sinica 2025;77(2):327-344
Alzheimer's disease (AD), a prototypical neurodegenerative disorder, encompasses multifaceted pathological processes. As pivotal cellular structures within the central nervous system, ion channels play critical roles in regulating neuronal excitability, synaptic transmission, and neurotransmitter release. Extensive research has revealed significant alterations in the expression and function of ion channels in AD, implicating an important role of ion channels in the pathogenesis of abnormal Aβ deposition, neuroinflammation, oxidative stress, and disruptions in calcium homeostasis and neural network functionality. This review systematically summarizes the crucial roles and underlying mechanisms of ion channels in the onset and progression of AD, highlighting how these channel abnormalities contribute to AD pathophysiology. We also discuss the therapeutic potential of ion channel modulation in AD treatment, emphasizing the importance of addressing multifactorial nature and heterogeneity of AD. The development of multi-target drugs and precision therapies is proposed as a future direction of scientific research.
Alzheimer Disease/therapy*
;
Humans
;
Ion Channels/physiology*
;
Oxidative Stress
;
Animals
;
Amyloid beta-Peptides/metabolism*
;
Synaptic Transmission
;
Calcium/metabolism*
4.Analysis of Correlation between Platelet Desialylation, Apoptosis and Platelet Alloantibody and CD8+ T Cells in Platelet Transfusion Refractoriness.
Yan ZHOU ; Li-Yang LIANG ; Chang-Shan SU ; Hui-Hui MO ; Ying CHEN ; Fang LU ; Yu-Chen HUANG ; Zhou-Lin ZHONG
Journal of Experimental Hematology 2025;33(4):1138-1144
OBJECTIVE:
To investigate the correlation between platelet alloantibodies and CD8+ T cell with platelet desialylation and apoptosis in platelet transfusion refractoriness(PTR).
METHODS:
The expression of RCA-1, CD62P and Neu1 on platelets were detected in 135 PTR patients and 260 healthy controls. The ability of PTR patients' sera with anti-HLA antibody, anti-CD36 antibody and antibody-negative groups to induce platelet desialylation and apoptosis, and the potential effect of FcγR inhibitors on desialylation and apoptosis were evaluated. Additionally, the association between CD8+ T cells and platelet desialylation in patients was analyzed.
RESULTS:
The expression of RCA-1 and Neu1 on platelets in PTR patients were significantly higher than those in healthy donors(P < 0.05), but were not related to platelet alloantibody (P >0.05). The sera of PTR patients generally induced platelet desialylation in vitro (P < 0.05), with no significant differences among the groups(P >0.05). However, the sera with anti-CD36 antibodies could induce platelet apoptosis significantly higher than that in the anti-HLA antibody group and antibody-negative group in vitro (P < 0.05). In PTR patients with anti-CD36 antibodies, platelet apoptosis was dependent on FcγR signaling, while desialylation is not. Moreover, CD8+ T cells in PTR patients were significantly associated with platelet desialylation (P < 0.05).
CONCLUSION
Platelet desialylation is a common pathological phenomenon in PTR patients, which involves the participation of CD8+ T cell, but isn't associated with platelet alloantibody; while anti-CD36 antibodies have potential clinical significance in predicting platelet apoptosis in PTR patients.
Humans
;
Apoptosis
;
CD8-Positive T-Lymphocytes/immunology*
;
Blood Platelets/metabolism*
;
Platelet Transfusion
;
Isoantibodies
;
Male
;
Female
;
Middle Aged
5.Comparison of the therapeutic efficacy of different methods of anesthesia in microscopic varicocelectomy for the treatment of varicocele.
Qun-Sheng LI ; Ning-Hua LI ; Lei ZHOU ; Dong-Run LI ; Jie LU ; Chun-Yan HE ; Yu-Nu ZHOU ; Jian-Mo CHEN ; Wen-Tao YANG
National Journal of Andrology 2025;31(8):692-697
OBJECTIVE:
To compare the therapeutic efficacy and safety of local anesthesia and spinal anesthesia for the patients with varicocele (VC) who underwent microsurgical varicocelectomy (MV).
METHODS:
We retrospectively analyzed the data of VC patients who underwent MV treatment at the Andrology Department of the Affiliated Ruikang Hospital of Guangxi University of Chinese Medicine from May 2020 to March 2023. Cases with complete clinical data and follow-up evaluation were selected and divided into a control group (spinal anesthesia) and an observation group (local anesthesia) according to different anesthesia methods. The surgical time (including anesthesia time), visual analogue scale (VAS) score for pain, hospital stay, treatment cost, sperm concentration, forward motile sperm rate, and normal sperm morphology rate after three months of surgery, as well as postoperative complications and recurrence rate were compared between the two groups.
RESULTS:
A total of 107 eligible cases were included, with 56 cases in the control group and 51 cases in the observation group. There was no significant difference in the VAS score for pain during and after four hours of surgery, as well as postoperative complications, and recurrence rate between the two groups (P> 0.05). There was an significant increase in sperm concentration, forward motile sperm rate, and normal sperm morphology rate in both of two groups after three months of surgery (P<0.05). However, there was no significant difference between the two groups three months after surgery (P>0.05). The surgical time and hospital stay were shorter than those of the control group (P<0.05). And the treatment cost in observation group was lower than that of the control group (P<0.05).
CONCLUSION
Both local anesthesia and lumbar anesthesia for MV treatment of VC have good efficacy and safety. However, patients treated with MV under local anesthesia for VC have obvious advantages in terms of operation time (including anesthesia time), hospital stay, and treatment cost, which is worthy of clinical promotion and application.
Humans
;
Male
;
Varicocele/surgery*
;
Retrospective Studies
;
Microsurgery
;
Anesthesia, Spinal
;
Adult
;
Treatment Outcome
;
Anesthesia, Local
6.Fibroblast growth factors and endometrial decidualization: models, mechanisms, and related pathologies.
Xueni ZHANG ; Yidi MO ; Chunbin LU ; Zhijian SU ; Xiaokun LI
Journal of Zhejiang University. Science. B 2025;26(6):573-588
The onset of pregnancy is marked by the formation of a zygote, while the culmination of gestation is manifested by the delivery of a fetus. Meanwhile, a successful pregnancy entails a meticulously coordinated sequence of events from embryo implantation to sustained decidualization of the uterus to placental development and childbirth. The decidual reaction, a pivotal process occurring within the endometrium during pregnancy, is finely regulated by sex steroids and cytokines. Notably, fibroblast growth factors (FGFs), particularly FGF2, play a critical role in this physiological cascade. Dysregulated FGF expression may trigger inadequate decidualization, precipitating a spectrum of adverse pregnancy outcomes, including preeclampsia, recurrent implantation failure, and miscarriage. Furthermore, the human decidua, distinct from most mammalian species and similar to great apes, undergoes regular cycles of formation and shedding, independent of the presence of the embryo in the endometrium. This process is also tightly controlled by various FGFs. In this review, we comprehensively compare diverse research decidualization models, delineate the trend of endometrial FGFs during the menstrual cycle, and provide a synopsis of endometrial diseases triggered by FGF dysregulation.
Humans
;
Female
;
Pregnancy
;
Decidua/physiology*
;
Animals
;
Endometrium/physiology*
;
Fibroblast Growth Factors/metabolism*
;
Embryo Implantation
;
Menstrual Cycle/physiology*
7.Discovery of a novel thiophene carboxamide analogue as a highly potent and selective sphingomyelin synthase 2 inhibitor for dry eye disease therapy.
Jintong YANG ; Yiteng LU ; Kexin HU ; Xinchen ZHANG ; Wei WANG ; Deyong YE ; Mingguang MO ; Xin XIAO ; Xichen WAN ; Yuqing WU ; Shuxian ZHANG ; He HUANG ; Zhibei QU ; Yimin HU ; Yu CAO ; Jiaxu HONG ; Lu ZHOU
Acta Pharmaceutica Sinica B 2025;15(1):392-408
Dry eye disease (DED) is a prevalent and intractable ocular disease induced by a variety of causes. Elevated sphingomyelin (SM) levels and pro-inflammatory cytokines were detected on the ocular surface of DED patients, particularly in the meibomian glands. Sphingomyelin synthase 2 (SMS2), one of the proteins involved in SM synthesis, would light a novel way of developing a DED therapy strategy. Herein, we report the design and optimization of a series of novel thiophene carboxamide derivatives to afford 14l with an improved highly potent inhibitory activity on SM synthesis (IC50, SMS2 = 28 nmol/L). Moreover, 14l exhibited a notable protective effect of anti-inflammation and anti-apoptosis on human corneal epithelial cells (HCEC) under TNF-α-hyperosmotic stress conditions in vitro, with an acceptable ocular specific distribution (corneas and meibomian glands) and pharmacokinetics (PK) profiles (t 1/2, cornea = 1.11 h; t 1/2, meibomian glands = 4.32 h) in rats. Furthermore, 14l alleviated the dry eye symptoms including corneal fluorescein staining scores and tear secretion in a dose-dependent manner in mice. Mechanically, 14l reduced the mRNA expression of Tnf-α, Il-1β and Mmp-9 in corneas, as well as the proportion of very long chain SM in meibomian glands. Our findings provide a new strategy for DED therapy based on selective SMS2 inhibitors.
8.JMJD1C forms condensate to facilitate a RUNX1-dependent gene expression program shared by multiple types of AML cells.
Qian CHEN ; Saisai WANG ; Juqing ZHANG ; Min XIE ; Bin LU ; Jie HE ; Zhuoran ZHEN ; Jing LI ; Jiajun ZHU ; Rong LI ; Pilong LI ; Haifeng WANG ; Christopher R VAKOC ; Robert G ROEDER ; Mo CHEN
Protein & Cell 2025;16(5):338-364
JMJD1C (Jumonji Domain Containing 1C), a member of the lysine demethylase 3 (KDM3) family, is universally required for the survival of several types of acute myeloid leukemia (AML) cells with different genetic mutations, representing a therapeutic opportunity with broad application. Yet how JMJD1C regulates the leukemic programs of various AML cells is largely unexplored. Here we show that JMJD1C interacts with the master hematopoietic transcription factor RUNX1, which thereby recruits JMJD1C to the genome to facilitate a RUNX1-driven transcriptional program that supports leukemic cell survival. The underlying mechanism hinges on the long N-terminal disordered region of JMJD1C, which harbors two inseparable abilities: condensate formation and direct interaction with RUNX1. This dual capability of JMJD1C may influence enhancer-promoter contacts crucial for the expression of key leukemic genes regulated by RUNX1. Our findings demonstrate a previously unappreciated role for the non-catalytic function of JMJD1C in transcriptional regulation, underlying a mechanism shared by different types of leukemias.
Core Binding Factor Alpha 2 Subunit/genetics*
;
Humans
;
Leukemia, Myeloid, Acute/pathology*
;
Jumonji Domain-Containing Histone Demethylases/chemistry*
;
Gene Expression Regulation, Leukemic
;
Oxidoreductases, N-Demethylating/genetics*
;
Cell Line, Tumor
9.Phenotypic Function of Legionella pneumophila Type I-F CRISPR-Cas.
Ting MO ; Hong Yu REN ; Xian Xian ZHANG ; Yun Wei LU ; Zhong Qiu TENG ; Xue ZHANG ; Lu Peng DAI ; Ling HOU ; Na ZHAO ; Jia HE ; Tian QIN
Biomedical and Environmental Sciences 2025;38(9):1105-1119
OBJECTIVE:
CRISPR-Cas protects bacteria from exogenous DNA invasion and is associated with bacterial biofilm formation and pathogenicity.
METHODS:
We analyzed the type I-F CRISPR-Cas system of Legionella pneumophila WX48, including Cas1, Cas2-Cas3, Csy1, Csy2, Csy3, and Cas6f, along with downstream CRISPR arrays. We explored the effects of the CRISPR-Cas system on the in vitro growth, biofilm-forming ability, and pathogenicity of L. pneumophila through constructing gene deletion mutants.
RESULTS:
The type I-F CRISPR-Cas system did not affect the in vitro growth of wild-type or mutant strains. The biofilm formation and intracellular proliferation of the mutant strains were weaker than those of the wild type owing to the regulation of type IV pili and Dot/Icm type IV secretion systems. In particular, Cas6f deletion strongly inhibited these processes.
CONCLUSION
The type I-F CRISPR-Cas system may reduce biofilm formation and intracellular proliferation in L. pneumophila.
Legionella pneumophila/pathogenicity*
;
CRISPR-Cas Systems
;
Biofilms/growth & development*
;
Phenotype
;
Bacterial Proteins/metabolism*
;
Gene Deletion
10.Impact of inhibiting aquaporin 4 expression on autophagy and apoptosis in a mouse model of cerebral ischemia-reperfusion
Shenglong MO ; Haiyan ZHU ; Zhicheng LU ; Jiaqi MO ; Xiaojing PENG ; Lina TANG ; Chengmin YANG ; Chongdong JIAN ; Jingwei SHANG
Chinese Journal of Pathophysiology 2024;40(8):1446-1454
AIM:To investigate the impact of aquaporin 4(AQP4)expression inhibition on autophagy and apoptosis in a mouse model of cerebral ischemia-reperfusion(I/R)injury,and to elucidate its underlying mechanism.METHODS:Cerebral I/R injury was induced in mice via transient middle cerebral artery occlusion(tMCAO).Totally 60 mice were randomly divided into sham group,I/R group,AQP4 inhibition group,and 3-methyladenine(3-MA)group,with 15 mice in each group.Among them,the mice in sham and I/R groups received intraperitoneal injections of normal saline,while those in AQP4 inhibition group and 3-MA group received intraperitoneal injections of AER-271(2 mg·kg-1·d-1)and AER-271+3-MA(2 mg·kg-1·d-1)for 3 d,respectively,once per day.Longa score was adopted to assess the neu-rological function,and to record changes in body weight.Cerebral infarction volume and histopathological alterations were evaluated using hematoxylin-eosin staining.Western blot analysis was performed to determine the levels of AQP4,LC3-Ⅱ,P62 and cleaved caspase-3,while the LC3-Ⅱ,P62,cleaved caspase-3 and NeuN(neuronal marker)colocalization and expression assessment were conducted with immunofluorescence.RESULTS:The mice in I/R and AQP4 inhibition groups exhibited extensive cerebral infarction,cerebral edema,and elevated Longa scores.However,in comparision to I/R group,the mice in AQP4 inhibition group showed significantly reduced cerebral infarct volume,cerebral edema vol-ume,and Longa score(P<0.05).Additionally,in contrast to sham group,the mice in I/R group displayed increased ex-pression of AQP4,LC3-Ⅱ and cleaved caspase-3(P<0.01),accompanied by decreased body weight and P62 expression(P<0.05 or P<0.01).Furthermore,compared with I/R group,the mice in both AQP4 inhibition group and 3-MA group demonstrated a decrease in the expression levels of AQP4,LC3-Ⅱ and cleaved caspase-3(P<0.05 or P<0.01),along with increased body weight and P62 expression(P<0.05 or P<0.01).Nonetheless,no significant differences were ob-served between AQP4 inhibition group and 3-MA group regarding Longa score,cerebral infarct volume,body weight,and the expression of AQP4,LC3-Ⅱ,cleaved caspase-3 and P62.CONCLUSION:Inhibition of AQP4 expression signifi-cantly reduces cerebral infarction area and nerve injury severity in tMCAO mice.Moreover,AQP4 expression inhibition decelerates autophagy and apoptosis after cerebral infarction,with the additional autophagy inhibitor showing no notable impact on the protective effect of AQP4 inhibition.

Result Analysis
Print
Save
E-mail