1.A Case Report of Pachydermoperiostosis by Multidisciplinary Diagnosis and Treatment
Jie ZHANG ; Yan ZHANG ; Li HUO ; Ke LYU ; Tao WANG ; Ze'nan XIA ; Xiao LONG ; Kexin XU ; Nan WU ; Bo YANG ; Weibo XIA ; Rongrong HU ; Limeng CHEN ; Ji LI ; Xia HONG ; Yan ZHANG ; Yagang ZUO
JOURNAL OF RARE DISEASES 2025;4(1):75-82
A 20-year-old male patient presented to the Department of Dermatology of Peking Union Medical College Hospital with complaints of an 8-year history of facial scarring, swelling of the lower limbs, and a 4-year history of scalp thickening. Physical examination showed thickening furrowing wrinkling of the skin on the face and behind the ears, ciliary body hirsutism, blepharoptosis, and cutis verticis gyrate. Both lower limbs were swollen, especially the knees and ankles. The skin of the palms and soles of the feet was keratinized and thickened. Laboratory examination using bone and joint X-ray showed periostosis of the proximal middle phalanges and metacarpals of both hands, distal ulna and radius, tibia and fibula, distal femurs, and metatarsals.Genetic testing revealed two variants in
2.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
3.Mechanism of action of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome and its regulation in liver injury.
Yifan LU ; Tianyu WANG ; Bo YU ; Kang XIA ; Jiayu GUO ; Yiting LIU ; Xiaoxiong MA ; Long ZHANG ; Jilin ZOU ; Zhongbao CHEN ; Jiangqiao ZHOU ; Tao QIU
Chinese Medical Journal 2025;138(9):1061-1071
Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) is a cytosolic pattern recognition receptor that recognizes multiple pathogen-associated molecular patterns and damage-associated molecular patterns. It is a cytoplasmic immune factor that responds to cellular stress signals, and it is usually activated after infection or inflammation, forming an NLRP3 inflammasome to protect the body. Aberrant NLRP3 inflammasome activation is reportedly associated with some inflammatory diseases and metabolic diseases. Recently, there have been mounting indications that NLRP3 inflammasomes play an important role in liver injuries caused by a variety of diseases, specifically hepatic ischemia/reperfusion injury, hepatitis, and liver failure. Herein, we summarize new research pertaining to NLRP3 inflammasomes in hepatic injury, hepatitis, and liver failure. The review addresses the potential mechanisms of action of the NLRP3 inflammasome, and its regulation in these liver diseases.
Humans
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammasomes/physiology*
;
Animals
;
Liver Diseases/metabolism*
;
Liver/metabolism*
;
Reperfusion Injury/metabolism*
4.Shenmai Injection Reduces Cardiomyocyte Apoptosis Induced by Doxorubicin through miR-30a/Bcl-2.
Xiao-Nan ZHANG ; Yan-Yang LI ; Shi-Chao LYU ; Qiu-Jin JIA ; Jun-Ping ZHANG ; Long-Tao LIU
Chinese journal of integrative medicine 2025;31(3):240-250
OBJECTIVE:
To explore the molecular mechanism of Shenmai Injection (SMI) against doxorubicin (DOX) induced cardiomyocyte apoptosis.
METHODS:
A total of 40 specific pathogen-free (SPF) male Sprague Dawley (SD) male rats were divided into 5 groups based on the random number table, including the control group, the model group, miR-30a agomir group, SMI low-dose (SMI-L) group, and SMI high-dose (SMI-H) group, with 8 rats in each group. Except for the control group, the rats were injected weekly with DOX (2 mg/kg) in the tail vein for 4 weeks to induce myocardial injury, and were given different regimens of continuous intervention for 2 weeks. Cardiac function was detected by echocardiography and myocardial pathological changes were observed by Van Gieson (VG) staining. Myocardial injury serum markers, including creatine kinase (CK), lactate dehydrogenase (LDH), troponin T (cTnT), N-terminal pro-brain natriuretic peptide (NT-proBNP), soluble ST2 (sST2), and growth differentiation factor-15 (GDF-15) were detected by enzyme linked immunosorbent assay (ELISA). Cardiomyocyte apoptosis was observed by terminal deoxynucleotidyl transferase-mediated biotinylated dUTP triphosphate nick end labeling (TUNEL) and transmission electron microscopy, and the expressions of target proteins and mRNA were detected by Western blot and quantitative real time polymerase chain reaction (qRT-RCR), respectively.
RESULTS:
The treatment with different doses of SMI reduced rat heart mass index and left ventricular mass index (P<0.05), significantly improved the left ventricular ejection fraction (P<0.05), decreased the levels of serum CK, LDH, cTnT, and NT-proBNP (P<0.05 or P<0.01), reduced the levels of serum sST2 and GDF-15 (P<0.05 or P<0.01), decreased the collagen volume fraction, reduced the expressions of rat myocardial type I and type III collagen (P<0.05 or P<0.01), and effectively alleviated myocardial fibrosis. And the study found that SMI promoted the expression levels of miR-30a and Bcl-2 in myocardium, and down-regulated the expression of Bax, which inhibited the activation of Caspase-3 and Caspase-9 (P<0.05 or P<0.01), and improved myocardial cell apoptosis.
CONCLUSIONS
SMI can alleviate myocardial injury and apoptosis caused by DOX, and its mechanism possibly by promoting the targeted expression of myocardial Bcl-2 protein through miR-30a.
Animals
;
Myocytes, Cardiac/metabolism*
;
Apoptosis/drug effects*
;
MicroRNAs/genetics*
;
Rats, Sprague-Dawley
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Doxorubicin/pharmacology*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
Drug Combinations
;
Injections
;
Rats
5.Nonsurgical Treatment of Chronic Subdural Hematoma Patients with Chinese Medicine: Case Report Series.
Kang-Ning LI ; Wei-Ming LIU ; Ying-Zhi HOU ; Run-Fa TIAN ; Shuo ZHANG ; Liang WU ; Long XU ; Jia-Ji QIU ; Yan-Ping TONG ; Tao YANG ; Yong-Ping FAN
Chinese journal of integrative medicine 2025;31(10):937-941
6.A practice guideline for therapeutic drug monitoring of mycophenolic acid for solid organ transplants.
Shuang LIU ; Hongsheng CHEN ; Zaiwei SONG ; Qi GUO ; Xianglin ZHANG ; Bingyi SHI ; Suodi ZHAI ; Lingli ZHANG ; Liyan MIAO ; Liyan CUI ; Xiao CHEN ; Yalin DONG ; Weihong GE ; Xiaofei HOU ; Ling JIANG ; Long LIU ; Lihong LIU ; Maobai LIU ; Tao LIN ; Xiaoyang LU ; Lulin MA ; Changxi WANG ; Jianyong WU ; Wei WANG ; Zhuo WANG ; Ting XU ; Wujun XUE ; Bikui ZHANG ; Guanren ZHAO ; Jun ZHANG ; Limei ZHAO ; Qingchun ZHAO ; Xiaojian ZHANG ; Yi ZHANG ; Yu ZHANG ; Rongsheng ZHAO
Journal of Zhejiang University. Science. B 2025;26(9):897-914
Mycophenolic acid (MPA), the active moiety of both mycophenolate mofetil (MMF) and enteric-coated mycophenolate sodium (EC-MPS), serves as a primary immunosuppressant for maintaining solid organ transplants. Therapeutic drug monitoring (TDM) enhances treatment outcomes through tailored approaches. This study aimed to develop an evidence-based guideline for MPA TDM, facilitating its rational application in clinical settings. The guideline plan was drawn from the Institute of Medicine and World Health Organization (WHO) guidelines. Using the Delphi method, clinical questions and outcome indicators were generated. Systematic reviews, Grading of Recommendations Assessment, Development, and Evaluation (GRADE) evidence quality evaluations, expert opinions, and patient values guided evidence-based suggestions for the guideline. External reviews further refined the recommendations. The guideline for the TDM of MPA (IPGRP-2020CN099) consists of four sections and 16 recommendations encompassing target populations, monitoring strategies, dosage regimens, and influencing factors. High-risk populations, timing of TDM, area under the curve (AUC) versus trough concentration (C0), target concentration ranges, monitoring frequency, and analytical methods are addressed. Formulation-specific recommendations, initial dosage regimens, populations with unique considerations, pharmacokinetic-informed dosing, body weight factors, pharmacogenetics, and drug-drug interactions are covered. The evidence-based guideline offers a comprehensive recommendation for solid organ transplant recipients undergoing MPA therapy, promoting standardization of MPA TDM, and enhancing treatment efficacy and safety.
Mycophenolic Acid/administration & dosage*
;
Drug Monitoring/methods*
;
Humans
;
Organ Transplantation
;
Immunosuppressive Agents/administration & dosage*
;
Delphi Technique
7.Microneedle-facilitated Portulaca oleracea L.-derived nanovesicles ameliorate atopic dermatitis by modulating macrophage M1/M2 polarization and inhibiting NF-κB and STING signaling pathways.
Meng LONG ; Jiaqi LI ; Yuecheng ZHU ; Hang RUAN ; Jing LI ; Fanjun XU ; Ruipeng LIU ; Tao YANG ; Yanqin SHI ; Nianping FENG ; Yongtai ZHANG
Acta Pharmaceutica Sinica B 2025;15(11):5966-5987
Clinical management of atopic dermatitis (AD) is challenged by its susceptibility to recurrence, side effects, and high costs. We found that Portulaca oleracea L.-derived nanovesicles (PDNV) exert anti-inflammatory effects by modulating macrophage M1/M2 polarization. These effects were achieved through pathways including inhibition of nuclear factor-κB (NF-κB) and stimulator of interferon genes (STING) protein expression in diseased tissues, demonstrating their potential to ameliorate AD symptoms. To increase the transdermal permeation of PDNV, dissolvable microneedles composed primarily of hyaluronic acid (HA) were developed as an adjunctive means of delivery. Meanwhile, polysaccharides of Portulaca oleracea L., which were synergistic with PDNV, were used as microneedle constituent materials to enhance the mechanical properties and physical stability of HA. This new means of delivery significantly improves the treatment of AD and also provides new options for the efficient utilization of plant extracellular vesicles and the treatment of AD. In addition, transcriptomic analysis of PDNV showed that the mRNAs of Portulaca oleracea L. are closest to those of ferns, which may shed light on related evolutionary and plant species identification studies.
8.Quercetin improves heart failure by inhibiting cardiomyocyte apoptosis via suppressing the MAPK signaling pathway.
Xiupeng LONG ; Shun TAO ; Shen YANG ; Suyun LI ; Libing RAO ; Li LI ; Zhe ZHANG
Journal of Southern Medical University 2025;45(1):187-196
OBJECTIVES:
To explore the mechanism that mediate the therapeutic effect of quercetin on heart failure.
METHODS:
We searched the TCMSP and Swiss ADME databases for the therapeutic targets of quercetin and retrieved heart failure targets from the Genecards and OMIM databases. The intersecting targets were analyzed with GO and KEGG pathway analysis using DAVID database, and the key genes were identified via PPI analysis. Molecular docking between the core targets and quercetin was performed using PyMOL and AutoDock Tools. In a heart failure model established in H9C2 cardiomyocytes by treatment with isoproterenol, the effect of quercetin on the expressions of the MAPK signaling pathway was tested.
RESULTS:
A total of 60 intersecting targets were identified. Enrichment analysis revealed that quercetin may inhibit heart failure through the MAPK signaling pathway. The core genes, including AMPK3 and BCL-2, were identified as potential key regulators in quercetin-mediated improvement of heart failure. Cellular experiments demonstrated that quercetin significantly reduced isoproterenol-induced apoptosis of cardiomyocytes in a dose-dependent manner and obviously decreased the Bax/Bcl-2 ratio and the expression levels of caspase-3, ERK and p38 in the cells.
CONCLUSIONS
Quercetin improves heart failure possibly by inhibiting cardiomyocyte apoptosis through the MAPK signaling pathway.
Quercetin/pharmacology*
;
Myocytes, Cardiac/drug effects*
;
Heart Failure/metabolism*
;
Apoptosis/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Rats
;
Animals
;
Isoproterenol
9.Research Progressin Application of Ultrasound in the Diagnosis and Treatment of Greater Trochanteric Pain Syndrome.
Fan WU ; Yi MAO ; Chun-Bao LI ; Long-Tao YAN ; Ming-Bo ZHANG
Acta Academiae Medicinae Sinicae 2025;47(2):289-294
Greater trochanteric pain syndrome(GTPS)is a disease caused by structural lesions of the muscles,fascia,ligaments,and bursae near the greater trochanter of the femur.GTPS causes lateral hip joint pain,severely affecting patients' quality of life.Ultrasound has many advantages,such as real-time diagnosis,portable operation,non-radiation,and high resolution,demonstrating a high application value in the diagnosis and interventional therapy of GTPS.This article reviews the current status of ultrasound in the diagnosis and interventional therapy of GTPS and prospects its application.
Humans
;
Ultrasonography
;
Femur/diagnostic imaging*
;
Hip Joint/diagnostic imaging*
;
Arthralgia/therapy*
10.Efficacy and safety of CA280 cytokine adsorption column in treatment of acute-on-chronic liver failure
Yan HE ; Dakai GAN ; Xiaoqing ZHANG ; Tao LONG ; Xuezhen ZHANG ; Wei ZHANG ; Yizhen XU ; Yuyu ZENG ; Rui ZHOU ; Shuanglan LIU ; Xizi JIANG ; Yushi LU ; Molong XIONG ; Yunfeng XIONG
Journal of Clinical Hepatology 2025;41(10):2093-2101
ObjectiveTo investigate the application of the novel inflammatory factor adsorption column CA280 combined with low-dose plasma exchange (LPE) in patients with acute-on-chronic liver failure (ACLF). MethodsA prospective cohort study was designed, and a total of 93 ACLF patients who were admitted to The Ninth Hospital of Nanchang from June 2023 to January 2025 were enrolled and randomly divided into DPMAS+LPE group with 50 patients and CA280+LPE group with 43 patients. In addition to comprehensive medical treatment, the patients in the DPMAS+LPE group received DPMAS and LPE treatment, and those in the CA280+LPE group received CA280 and LPE treatment. The two groups were observed in terms of routine blood test results, liver function parameters, renal function markers, electrolytes, coagulation function parameters, cytokines, adverse events, and 28-day prognosis before surgery (baseline), during surgery (DPMAS or CA280), and after surgery (after sequential LPE treatment). The paired t-test was used for comparison of normally distributed continuous data before and after treatment within each group, and the independent-samples t test was used for comparison between groups; the Wilcoxon signed-rank test was used for comparison of non-normally distributed continuous data before and after treatment within each group, and the Mann-Whitney U test was used for comparison between groups. The chi-square test or the Fisher’s exact test was used for comparison of categorical data between groups, and the Spearman test was used for correlation analysis. ResultsAfter CA280 treatment, the ACLF patients had significant reductions in the levels of cytokines (IL-6, IL-8, IL-10, TNF-α, and IFN-γ), liver function parameters (ALT, AST, ALP, TBil, DBil, Alb, and glutathione reductase), and the renal function marker urea nitrogen (all P<0.05), and in terms of coagulation function parameters, there were significant increases in prothrombin time, activated partial thromboplastin time (APTT), thrombin time, and international normalized ratio (INR) and significant reductions in prothrombin activity (PTA) and fibrinogen (FIB) (all P<0.05). Compared with the DPMAS+LPE group, the CA280+LPE group showed better improvements in the serum cytokines IL-8 (Z=-2.63, P=0.009), IL-10 (Z=-3.94, P<0.001), and TNF-α (Z=-1.53, P=0.023), and the two artificial liver support systems had a similar effect in improving liver function (ALT, AST, GGT, GR, TBil, and DBil) (all P >0.05), but the CA280+LPE group showed a significantly greater reduction in Alb (Z=-2.08, P=0.037). CA280+LPE was more effective in reducing uric acid (Z=-2.97, P=0.003). Compared with DPMAS+LPE, CA280+LPE treatment resulted in a significant reduction in INR (Z=-4.01, P<0.001), a significant increase in APTT (Z=-2.53, P=0.011), and significant greater increases in PTA (Z=-6.28, P<0.001) and FIB (Z=-3.93, P<0.001). There were no significant differences in the incidence rates of adverse reactions and the rate of improvement at discharge between the two groups (all P>0.05). The Spearman correlation analysis showed that IL-6 was significantly correlated with WBC (r=0.22, P=0.042), TBil (r=0.29, P=0.005), and FIB (r=-0.33, P=0.003); IL-8 was positively correlated with APTT (r=0.37, P<0.001) and INR (r=0.25, P=0.013); TNF-α was significantly correlated with WBC (r=0.40, P<0.001) and TBil (r=0.34, P<0.001). ConclusionCompared with DPMAS, CA280 combined with LPE can effectively clear proinflammatory cytokines and improve liver function in ACLF patients, but it has a certain impact on Alb and coagulation function. This regimen provides a new option for the individualized treatment of ACLF and can improve the short-term prognosis of patients, but further studies are needed to verify its long-term efficacy.

Result Analysis
Print
Save
E-mail