1.STAR Guideline Terminology (I): Planning and Launching
Zhewei LI ; Qianling SHI ; Hui LIU ; Xufei LUO ; Zijun WANG ; Jinhui TIAN ; Long GE ; Yaolong CHEN
Medical Journal of Peking Union Medical College Hospital 2025;16(1):216-223
To develop a guideline terminology system and promote its standardization, thereby enhancing medical staff's accurate understanding and correct application of guidelines. A systematic search was conducted for guideline development manuals and method ological literature (as of October 25, 2024). After screening, relevant terms from the guideline planning and launching stages were extracted and standardized. The term list and definitions were finalized through discussion and evaluation at a consensus conference. A total of 36 guideline manuals and 14 method ological articles were included, and 27 core terms were identified. The standardization of guideline terminology is essential for improving guideline quality, facilitating interdisciplinary communication, and enhancing other related aspects. It is recommended that efforts to advance the standardization and continuous updating of the terminology system should be prioritized in the future to support the high-quality development of guidelines.
2.Five new triterpenoid saponins from the kernels of Momordica cochinchinensis
Ru DING ; Jia-qi WANG ; Yi-yang LUO ; Yong-long HAN ; Xiao-bo LI ; Meng-yue WANG
Acta Pharmaceutica Sinica 2025;60(2):442-448
Five saponins were isolated from the kernels of
3.Common Environmental Problems and Testing Experiences in Laboratory Animal Facilities in Sichuan Province
Wentao LIU ; Yanhong LUO ; Yongxia LONG ; Qihui LUO ; Zhengli CHEN ; Lida LIU
Laboratory Animal and Comparative Medicine 2025;45(4):483-489
Laboratory animals are the "living" tools of medical research. Through animal experiments, people can gain continuous insights into the laws of life, reveal the essence of diseases, develop vaccines and drugs for prevention and treatment, and play an important role in the technological development of fields related to human health. The environmental conditions of laboratory animals have a direct impact on their health, quality, and the results of animal experiments. The higher the degree of environmental control, the more reliable the experimental results are in terms of quality. Therefore, environmental control of laboratory animal facilities is important for ensuring that laboratory animals live under required conditions, which is a key factor for conducting effective animal experiments. This article analyzes the current status of environmental testing of laboratory animal facilities in Sichuan Province, briefly summarizing their number, area, and other basic information, and provides detailed statistics on the ability of institutions to conduct environmental testing for laboratory animal facilities in Sichuan Province. It also summarizes the testing requirements for laboratory animal facility environments based on national standards, regulatory requirements, and the quality control needs of facility users. In the analysis of testing indicators for laboratory animal facilities, based on testing data from 40 laboratory animal facilities in Sichuan Province, it was found that static pressure difference is the indicator most prone to non-compliance, followed by illumination and air exchange rate. Using barrier environments as examples, common problems in the process of environmental testing for laboratory animal facilities are summarized in six aspects: testing personnel, instruments, methods, technical materials, testing environment, and reports, and targeted suggestions are proposed. These suggestions help improve environmental control in laboratory animal facilities, and provide practical reference and guidance for relevant testing institutions, as well as laboratory animal producers and users in the industry.
4.Evidence evaluation of 12 commonly-used Chinese patent medicines in treatment of osteoporosis based on Eff-iEC and GRADE.
Guang-Cheng WEI ; Zhi-Long ZHANG ; Xin-Wen ZHANG ; Ye LUO ; Jin-Jie SHI ; Rui MA ; Jie-Yang DU ; Ke ZHU ; Jiu-Cheng PENG ; Yu-Long YA ; Wei CAO
China Journal of Chinese Materia Medica 2025;50(15):4372-4385
This study applied the grading of recommendations assessment, development and evaluation(GRADE) system and the integrated evidence chain-based effectiveness evaluation of traditional Chinese medicine(Eff-iEC) to evaluate the evidence for 12 commonly used Chinese patent medicines for the treatment of osteoporosis, which are frequently recommended in guidelines or expert consensuses. The results showed that Xianling Gubao Capsules/Tablets were rated as C(low-level evidence) according to the GRADE system, and as BA~+B~+(intermediate evidence) according to the Eff-iEC system. Jintiange Capsules were rated as C(low-level evidence) by the GRADE system, and as AA~+B(high-level evidence) by the Eff-iEC system. Gushukang Granules/Capsules were rated as C(low-level evidence) by GRADE system, and as BA~+B~+(intermediate evidence) by Eff-iEC system. Zuogui Pills were rated as C(low-level evidence) by GRADE system, and as AA~(++)B~+(high-level evidence) by Eff-iEC system. Qianggu Capsules were rated as D(extremely low-level evidence) by GRADE system, and as AA~+B~+(high-level evidence) by Eff-iEC system. Zhuanggu Zhitong Capsules were rated as D(extremely low-level evidence) by GRADE system, and as BA~+B(intermediate evidence) by Eff-iEC system. Jingui Shenqi Pills were rated as D(extremely low-level evidence) by GRADE system, and as AA~+B(high-level evidence) by Eff-iEC system. Quanduzhong Capsules were rated as D(extremely low-level evidence) by GRADE system, and as AD~+B~+(low-level evidence) by Eff-iEC system. Epimedium Total Flavones Capsules were rated as D(extremely low-level evidence) by GRADE system, and as AAB~+(high-level evidence) by Eff-iEC system. Yougui Pills were rated as D(extremely low-level evidence) by GRADE system, and as AA~(++)B~(+ )(high-level evidence) by Eff-iEC system. Qigu Capsules were rated as D(extremely low-level evidence) by GRADE system, and as BB~+B(intermediate evidence) by Eff-iEC system. Liuwei Dihuang Pills were rated as C(low-level evidence) by GRADE system, and as AA~(++)B~+(high-level evidence) by Eff-iEC system. Overall, the Eff-iEC system provides a more comprehensive assessment of the effectiveness evidence for traditional Chinese medicine(TCM) than the GRADE system. However, it still has certain limitations that hinder its wider promotion and application. In terms of clinical evidence evaluation, both the Eff-iEC and GRADE systems reflect that the current clinical research quality on Chinese patent medicines for the treatment of osteoporosis is generally low. High-quality clinical trials are still needed in the future to further validate clinical efficacy.
Drugs, Chinese Herbal/therapeutic use*
;
Osteoporosis/drug therapy*
;
Humans
;
Nonprescription Drugs/therapeutic use*
;
Evidence-Based Medicine
;
Medicine, Chinese Traditional
5.Mechanism of Tougu Xiaotong Capsules in alleviating glycolytic metabolism disorder of chondrocytes in osteoarthritis by modulating circFOXO3.
Chang-Long FU ; Yan LUO ; Jia-Jia XU ; Yan-Ming LIN ; Qing LIN ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(16):4641-4648
From the perspective of circular RNA forkhead box protein O3(circFOXO3) regulating glycolysis in osteoarthritis(OA) chondrocytes, this study investigated the mechanism by which Tougu Xiaotong Capsules(TGXTC) alleviated OA degeneration. In in vivo experiments, after randomized grouping and relevant interventions, morphological staining was used to observe structural changes in cartilage tissue. The mRNA level of circFOXO3 in cartilage tissue was detected by real-time quantitative PCR(RT-qPCR). Western blot analysis was used to detect changes in the expression of glucose transporter 1(GLUT1), hexokinase 2(HK2), pyruvate kinase M2(PKM2), lactate dehydrogenase A(LDHA), and matrix metalloproteinase 13(MMP13). In in vitro experiments, fluorescence in situ hybridization(FISH) was used to detect circFOXO3 expression in chondrocytes from each group. A lentiviral vector was used to construct circFOXO3-silenced(sh-circFOXO3) chondrocytes. RT-qPCR was used to analyze the changes in circFOXO3 levels after silencing, and Western blot was used to assess the regulatory effects of TGXTC on GLUT1, HK2, PKM2, LDHA, and MMP13 proteins in interleukin-1β(IL-1β)-induced chondrocytes under sh-circFOXO3 conditions. Masson staining and alcian blue staining results showed that the cartilage layer structure in the TGXTC and positive drug groups was improved compared with that in the model group. The mRNA level of circFOXO3 was significantly upregulated in both the TGXTC and positive drug groups, while the expression of the above-mentioned proteins was significantly reduced. FISH results showed that TGXTC upregulated the fluorescence intensity of circFOXO3 in IL-1β-induced chondrocytes. In the circFOXO3 silencing experiment, compared with the IL-1β group, circFOXO3 levels in the IL-1β + sh-circFOXO3 group were significantly decreased. Compared with the IL-1β + TGXTC group, circFOXO3 levels were significantly reduced in the IL-1β + sh-circFOXO3 + TGXTC group. Western blot results indicated that the elevated levels of GLUT1, HK2, PKM2, LDHA, and MMP13 proteins in chondrocytes of the IL-1β group were significantly inhibited by TGXTC intervention. However, this regulatory effect was attenuated after circFOXO3 silencing. In conclusion, TGXTC alleviate glycolytic metabolism disorder in OA chondrocytes and delay OA degeneration by regulating circFOXO3.
Chondrocytes/metabolism*
;
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
RNA, Circular/metabolism*
;
Osteoarthritis/genetics*
;
Glycolysis/drug effects*
;
Humans
;
Forkhead Box Protein O3/metabolism*
;
Male
;
Capsules
;
Matrix Metalloproteinase 13/genetics*
6.Finite element analysis of impact of bone mass and volume in low-density zone beneath tibial plateau on cartilage and meniscus in knee joint.
Longfei HAN ; Wenyuan HOU ; Shun LU ; Zijun ZENG ; Kun LIN ; Mingli HAN ; Guifeng LUO ; Long TIAN ; Fan YANG ; Mincong HE ; Qiushi WEI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(3):296-306
OBJECTIVE:
To investigate the impact of bone mass and volume of low-density zones beneath the tibial plateau on the maximum von Mises stresses experienced by the cartilage and meniscus in the knee joint.
METHODS:
The study included one healthy adult volunteer, from whom CT scans were obtained, and one patient diagnosed with knee osteoarthrisis (KOA), for whom X-ray films were acquired. A static model of the knee joint featuring a low-density zone was established based on a normal knee model. In the finite element analysis, axial loads of 1 000 N and 1 800 N were applied to the weight-bearing region of the upper surface of the femoral head for model validation and subsequent finite element studies, respectively. The maximum von Mises stresses in the femoral cartilage, as well as the medial and lateral tibial cartilage and menisci, were observed, and the stress percentage of the medial and lateral components were concurrently analyzed. Additionally, HE staining, as well as alkaline magenta staining, were performed on the pathological specimens of patients with KOA in various low-density regions.
RESULTS:
The results of model validation indicated that the model was consistent with normal anatomical structures and correlated with previous calculations documented in the literature. Static analysis revealed that the maximum von Mises stress in the medial component of the normal knee was the lowest and increased with the advancement of the hypointensity zone. In contrast, the lateral component exhibited an opposing trend, with the maximum von Mises stress in the lateral component being the highest and decreasing as the hypointensity zone progressed. Additionally, the medial component experienced an increasing proportion of stress within the overall knee joint. HE staining demonstrated that the chondrocyte layer progressively deteriorated and may even disappear as the hypointensity zone expanded. Furthermore, alkaline magenta staining indicated that the severity of microfractures in the trabecular bone increased concurrently with the expansion of the hypointensity zone.
CONCLUSION
The presence of subtalar plateau low-density zone may aggravate joint degeneration. In clinical practice, it is necessary to pay attention to the changes in the subtalar plateau low-density zone and actively take effective measures to strengthen the bone status of the subtalar plateau low-density zone and restore the complete biomechanical function of the knee joint, in order to slow down or reverse the progression of osteoarthritis.
Humans
;
Finite Element Analysis
;
Knee Joint/physiology*
;
Tibia/anatomy & histology*
;
Cartilage, Articular/physiology*
;
Menisci, Tibial/physiopathology*
;
Tomography, X-Ray Computed
;
Osteoarthritis, Knee/diagnostic imaging*
;
Weight-Bearing
;
Bone Density
;
Adult
;
Stress, Mechanical
;
Male
;
Middle Aged
;
Biomechanical Phenomena
;
Female
7.Complications among patients undergoing orthopedic surgery after infection with the SARS-CoV-2 Omicron strain and a preliminary nomogram for predicting patient outcomes.
Liang ZHANG ; Wen-Long GOU ; Ke-Yu LUO ; Jun ZHU ; Yi-Bo GAN ; Xiang YIN ; Jun-Gang PU ; Huai-Jian JIN ; Xian-Qing ZHANG ; Wan-Fei WU ; Zi-Ming WANG ; Yao-Yao LIU ; Yang LI ; Peng LIU
Chinese Journal of Traumatology 2025;28(6):445-453
PURPOSE:
The rate of complications among patients undergoing surgery has increased due to infection with SARS-CoV-2 and other variants of concern. However, Omicron has shown decreased pathogenicity, raising questions about the risk of postoperative complications among patients who are infected with this variant. This study aimed to investigate complications and related factors among patients with recent Omicron infection prior to undergoing orthopedic surgery.
METHODS:
A historical control study was conducted. Data were collected from all patients who underwent surgery during 2 distinct periods: (1) between Dec 12, 2022 and Jan 31, 2023 (COVID-19 positive group), (2) between Dec 12, 2021 and Jan 31, 2022 (COVID-19 negative control group). The patients were at least 18 years old. Patients who received conservative treatment after admission or had high-risk diseases or special circumstances (use of anticoagulants before surgery) were excluded from the study. The study outcomes were the total complication rate and related factors. Binary logistic regression analysis was used to identify related factors, and odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the impact of COVID-19 infection on complications.
RESULTS:
In the analysis, a total of 847 patients who underwent surgery were included, with 275 of these patients testing positive for COVID-19 and 572 testing negative. The COVID-19-positive group had a significantly higher rate of total complications (11.27%) than the control group (4.90%, p < 0.001). After adjusting for relevant factors, the OR was 3.08 (95% CI: 1.45-6.53). Patients who were diagnosed with COVID-19 at 3-4 weeks (OR = 0.20 (95% CI: 0.06-0.59), p = 0.005), 5-6 weeks (OR = 0.16 (95% CI: 0.04-0.59), p = 0.010), or ≥7 weeks (OR = 0.26 (95% CI: 0.06-1.02), p = 0.069) prior to surgery had a lower risk of complications than those who were diagnosed at 0-2 weeks prior to surgery. Seven factors (age, indications for surgery, time of operation, time of COVID-19 diagnosis prior to surgery, C-reactive protein levels, alanine transaminase levels, and aspartate aminotransferase levels) were found to be associated with complications; thus, these factors were used to create a nomogram.
CONCLUSION
Omicron continues to be a significant factor in the incidence of postoperative complications among patients undergoing orthopedic surgery. By identifying the factors associated with these complications, we can determine the optimal surgical timing, provide more accurate prognostic information, and offer appropriate consultation for orthopedic surgery patients who have been infected with Omicron.
Humans
;
COVID-19/complications*
;
Male
;
Female
;
Middle Aged
;
Postoperative Complications/epidemiology*
;
SARS-CoV-2
;
Orthopedic Procedures/adverse effects*
;
Aged
;
Nomograms
;
Adult
;
Retrospective Studies
;
Risk Factors
8.Relationships between Molecular Genetics and Clinical Features of Children with Acute Myeloid Leukemia.
Fei LONG ; Hao XIONG ; Li YANG ; Ming SUN ; Zhi CHEN ; Wen-Jie LU ; Shan-Shan QI ; Fang TAO ; Lin-Lin LUO ; Jing-Pei CHEN
Journal of Experimental Hematology 2025;33(1):69-74
OBJECTIVE:
To analyze the molecular genetic spectrum of children with acute myeloid leukemia (AML), and explore its correlation with clinical characteristics and prognosis.
METHODS:
The clinical and molecular genetic data of 116 children with newly diagnosed AML in Wuhan Children's Hospital from September 2015 to August 2022 were retrospectively analyzed. The Fisher's exact test was used to analyze the correlation of gene mutations with clinical features, and Kaplan-Meier curve was used to analyze the influences of gene mutations on the prognosis.
RESULTS:
NRAS (22%), KRAS (14.9%), and KIT (14.7%) mutations were the most common genetic abnormalities in 116 children with AML. Children with KIT, CEBPA and GATA2 mutations showed a higher median onset-age than those without mutations (all P < 0.05). Children with FLT3-ITD mutation exhibited a higher white blood cell count at initial diagnosis compared to those without mutations (P < 0.05). Children with ASXL2 mutation had lower platelet count and hemoglobin at initial diagnosis than those without mutations (both P < 0.05). KIT mutations were often co-occurred with t(8;21)(q22;q22). There was no significant relationship between gene mutation and minimal residual disease (MRD) remission rate after the first and second induction therapy (P >0.05). KIT and NRAS mutations were not associated with prognosis significantly (P >0.05). The overall survival (OS) rates of children with CEBPA and FLT3-ITD mutations were superior to those without mutations, but the differences were not statistically significant (P >0.05). The 3-year OS rate of 61 children treated by allogeneic hematopoietic stem cell transplantation was 89.8%, which was significantly higher than 55.2% of those only treated by chemotherapy (P < 0.001).
CONCLUSIONS
Gene mutations are common in children with AML, and next-generation sequencing can significantly improve the detection rate of gene mutations, which can guide the risk stratification therapy. In addition, FLT3-ITD and KIT mutations may no longer be poor prognostic factors.
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
Mutation
;
Prognosis
;
Retrospective Studies
;
fms-Like Tyrosine Kinase 3/genetics*
;
Child
;
Proto-Oncogene Proteins c-kit/genetics*
;
Male
;
Female
;
CCAAT-Enhancer-Binding Proteins/genetics*
;
Membrane Proteins/genetics*
;
Child, Preschool
;
Adolescent
;
GATA2 Transcription Factor/genetics*
;
GTP Phosphohydrolases/genetics*
;
Proto-Oncogene Proteins p21(ras)/genetics*
9.Ferrum@albumin assembled nanoclusters inhibit NF-κB signaling pathway for NIR enhanced acute lung injury immunotherapy.
Xiaoxuan GUAN ; Binbin ZOU ; Weiqian JIN ; Yan LIU ; Yongfeng LAN ; Jing QIAN ; Juan LUO ; Yanjun LEI ; Xuzhi LIANG ; Shiyu ZHANG ; Yuting XIAO ; Yan LONG ; Chen QIAN ; Chaoyu HUANG ; Weili TIAN ; Jiahao HUANG ; Yongrong LAI ; Ming GAO ; Lin LIAO
Acta Pharmaceutica Sinica B 2025;15(11):5891-5907
Acute lung injury (ALI) has been a kind of acute and severe disease that is mainly characterized by systemic uncontrolled inflammatory response to the production of huge amounts of reactive oxygen species (ROS) in the lung tissue. Given the critical role of ROS in ALI, a Fe3O4 loaded bovine serum albumin (BSA) nanocluster (BF) was developed to act as a nanomedicine for the treatment of ALI. Combining with NIR irradiation, it exhibited excellent ROS scavenging capacity. Significantly, it also displayed the excellent antioxidant and anti-inflammatory functions for lipopolysaccharides (LPS) induced macrophages (RAW264.7), and Sprague Dawley rats via lowering intracellular ROS levels, reducing inflammatory factors expression levels, inducing macrophage M2 polarization, inhibiting NF-κB signaling pathway, increasing CD4+/CD8+ T cell ratios, as well as upregulating HSP70 and CD31 expression levels to reprogram redox homeostasis, reduce systemic inflammation, activate immunoregulation, and accelerate lung tissue repair, finally achieving the synergistic enhancement of ALI immunotherapy. It finally provides an effective therapeutic strategy of BF + NIR for the management of inflammation related diseases.
10.Oxymatrine, a novel TLR2 agonist, promotes megakaryopoiesis and thrombopoiesis through the STING/NF-κB pathway.
Chengyang NI ; Ling ZHOU ; Shuo YANG ; Mei RAN ; Jiesi LUO ; Kui CHENG ; Feihong HUANG ; Xiaoqin TANG ; Xiang XIE ; Dalian QIN ; Qibing MEI ; Long WANG ; Juan XIAO ; Jianming WU
Journal of Pharmaceutical Analysis 2025;15(1):101054-101054
Radiation-induced thrombocytopenia (RIT) faces a perplexing challenge in the clinical treatment of cancer patients, and current therapeutic approaches are inadequate in the clinical settings. In this research, oxymatrine, a new molecule capable of healing RIT was screened out, and the underlying regulatory mechanism associated with magakaryocyte (MK) differentiation and thrombopoiesis was demonstrated. The capacity of oxymatrine to induce MK differentiation was verified in K-562 and Meg-01 cells in vitro. The ability to induce thrombopoiesis was subsequently demonstrated in Tg (cd41:enhanced green fluorescent protein (eGFP)) zebrafish and RIT model mice. In addition, we carried out network pharmacological prediction, drug affinity responsive target stability assay (DARTS) and cellular thermal shift assay (CETSA) analyses to explore the potential targets of oxymatrine. Moreover, the pathway underlying the effects of oxymatrine was determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, Western blot (WB), and immunofluorescence. Oxymatrine markedly promoted MK differentiation and maturation in vitro. Moreover, oxymatrine induced thrombopoiesis in Tg (cd41:eGFP) zebrafish and accelerated thrombopoiesis and platelet function recovery in RIT model mice. Mechanistically, oxymatrine directly binds to toll-like receptor 2 (TLR2) and further regulates the downstream pathway stimulator of interferon genes (STING)/nuclear factor-kappaB (NF-κB), which can be blocked by C29 and C-176, which are specific inhibitors of TLR2 and STING, respectively. Taken together, we demonstrated that oxymatrine, a novel TLR2 agonist, plays a critical role in accelerating MK differentiation and thrombopoiesis via the STING/NF-κB axis, suggesting that oxymatrine is a promising candidate for RIT therapy.

Result Analysis
Print
Save
E-mail