1.Effectiveness of arthroscopic release assisted with medial small incision in treatment of non-traumatic elbow stiffness.
Lijun LÜ ; Yanyan CHANG ; Baojun ZHOU ; Qiuming GAO ; Jieliang HU ; Liyuan CHEN ; Kongxing WEI ; Fujun GAO ; Wentao LI ; Xin YUAN ; Yibin JIN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(5):563-568
OBJECTIVE:
To explore the effectiveness of arthroscopic release of elbow joint assisted by medial small incision ulnar nerve release in the treatment of non-traumatic elbow stiffness.
METHODS:
The clinical data of 15 patients with non-traumatic elbow stiffness treated with arthroscopic release of elbow joint assisted by medial small incision ulnar nerve release between April 2019 and September 2023 were retrospectively analyzed. There were 6 males and 9 females with an average age of 46 years ranging from 34 to 56 years. The causes included rheumatoid arthritis in 3 cases, gouty arthritis in 2 cases, loose bodies in 3 cases, and elbow osteoarthritis in 7 cases. There were 4 cases with ulnar neuritis and 3 cases with synovial osteochondromatosis. The duration of elbow stiffness ranged from 6 to 18 months, with an average of 10 months. The operation time and intraoperative blood loss were recorded. The effectiveness was evaluated by visual analogue scale (VAS) score, range of elbow motion (maximum flexion, maximum extension, and total flexion and extension), Mayo score, and Hospital for Special Surgery (HSS) elbow score.
RESULTS:
The operation time was 60-90 minutes, with an average of 65 minutes, and the intraoperative blood loss was 40-100 mL, with an average of 62 mL. All patients were followed up 13-18 months, with an average of 14 months. There was no complication such as vascular and nerve injury, poor wound healing, collateral ligament injury, elbow joint space narrowing, osteophyte proliferation, or loose body formation around the joint. At last follow-up, the elbow range of motion (maximum flexion, maximum extension, and total flexion and extension), VAS score, and Mayo score significantly improved when compared with those before operation ( P<0.05). The HSS elbow score was 85-95, with an average of 92; 12 cases were excellent, 3 cases were good, and the excellent and good rate was 100%.
CONCLUSION
Arthroscopic release of elbow joint assisted by medial small incision ulnar nerve release is an effective way to treat non-traumatic elbow stiffness, which has the advantages of small trauma, short operation time, and good effectiveness. It can carry out early elbow rehabilitation training and significantly improve elbow function.
Humans
;
Male
;
Female
;
Arthroscopy/methods*
;
Adult
;
Middle Aged
;
Elbow Joint/physiopathology*
;
Retrospective Studies
;
Range of Motion, Articular
;
Treatment Outcome
;
Ulnar Nerve/surgery*
;
Operative Time
2.Correlation analysis of homocysteine and ferritin with gestational anemia and adverse pregnancy outcomes in advanced age pregnant women
Fen LI ; Jingjing DONG ; Yuanyuan MENG ; Liyuan ZHAO ; Liyan JIN
Chinese Journal of Postgraduates of Medicine 2024;47(5):397-402
Objective:To analyze the correlation between homocysteine (Hcy), ferritin and gestational anemia in advanced age pregnant women, and the effect on adverse pregnancy outcomes.Methods:The clinical data of 344 advanced age pregnant women in Handan City Maternal and Child Health Hospital from March 2021 to June 2022 were retrospectively analyzed. The adverse pregnancy outcomes were followed up and recorded. The pregnant women were divided into anemia group (114 cases) and control group (230 cases) according to the diagnostic criteria for anemia. The levels of Hcy and ferritin, etc. were compared between two groups, different degrees of anemia and different pregnancy outcomes. Pearson method was used to analyze the correlation between Hcy, ferritin and hemoglobin. Multivariate Logistic regression was used to analyze the independent risk factors of adverse pregnancy outcomes in advanced age pregnant women with gestational anemia.Results:The Hcy in anemia group was significantly higher than that in control group: (31.39 ± 3.34) mol/L vs. (9.28 ± 1.44) mol/L, the ferritin was significantly lower than that in control group: (69.81 ± 5.08) μg/L vs. (96.43 ± 7.52) μg/L, and there were statistical differences ( P<0.01). Among 114 advanced age pregnant women with gestational anemia, 64 cases were mild anemia (mild anemia group), 35 cases were moderate anemia (moderate anemia group), and 15 cases were severe anemia (severe anemia group). The levels of Hcy in the control group, mild anemia group, moderate anemia group and severe anemia group were gradually increased: (9.28 ± 1.44), (24.79 ± 3.25), (37.63 ± 5.51) and (45.01 ± 7.23) mol/L, the levels of ferritin were gradually decreased: (96.43 ± 7.52), (81.19 ± 5.14), (64.82 ± 4.47) and (32.96 ± 2.01) μg/L, and the difference between pairwise comparisons were statistically significant ( P<0.05). Pearson correlation analysis result showed that Hcy was negatively correlated with hemoglobin ( r = - 0.596, P<0.01), and ferritin was positively correlated with hemoglobin ( r = 0.685, P<0.01). Among 114 advanced age pregnant women with gestational anemia, 35 cases had adverse pregnancy outcomes, and 79 cases had normal pregnancy outcomes. The age, gestational reproductive tract infection rate and Hcy in advanced age pregnant women with adverse pregnancy outcomes were significantly higher than those in advanced age pregnant women with normal pregnancy outcomes: (41.17 ± 3.74) years old vs. (38.25 ± 4.28) years old, 28.57% (10/35) vs. 10.13% (8/79) and (49.56 ± 4.12) mol/L vs. (23.34 ± 2.63) mol/L, the ferritin was significantly lower than that in advanced age pregnant women with normal pregnancy outcomes: (38.36 ± 3.08) μg/L vs. (83.74 ± 6.25) μg/L, and the degree of gestational anemia was more serious than that in advanced age pregnant women with normal pregnancy outcomes, and there were statistical differences ( P<0.01 or <0.05). Multivariate Logistic regression analysis result showed that age, gestational reproductive tract infection, Hcy, ferritin and the degree of gestational anemia were the independent risk factors of adverse pregnancy outcomes in advanced age pregnant women with gestational anemia ( OR = 1.570, 1.758, 1.865, 1.556 and 1.652; 95% CI 1.154 to 2.136, 1.181 to 2.617, 1.223 to 2.842, 1.100 to 2.201 and 1.175 to 2.323; P<0.01). Conclusions:The level of Hcy in advanced age pregnant women with gestational anemia is relatively higher, and the level of ferritin is relatively lower. The ferritin and Hcy levels are risk factors for adverse pregnancy outcomes in advanced age pregnant women with gestational anemia, and may be involved in the occurrence and development of gestational anemia in advanced age pregnant women.
3.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement.
Liyuan CHEN ; Huajie YU ; Zixin LI ; Yu WANG ; Shanshan JIN ; Min YU ; Lisha ZHU ; Chengye DING ; Xiaolan WU ; Tianhao WU ; Chunlei XUN ; Yanheng ZHOU ; Danqing HE ; Yan LIU
International Journal of Oral Science 2024;16(1):3-3
Pyroptosis, an inflammatory caspase-dependent programmed cell death, plays a vital role in maintaining tissue homeostasis and activating inflammatory responses. Orthodontic tooth movement (OTM) is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament (PDL) progenitor cells. However, whether and how force induces PDL progenitor cell pyroptosis, thereby influencing OTM and alveolar bone remodeling remains unknown. In this study, we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process. Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively. Using Caspase-1-/- mice, we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1. Moreover, mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro, which influenced osteoclastogenesis. Mechanistically, transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells. Overall, this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli, indicating a promising approach to accelerate OTM by targeting Caspase-1.
Animals
;
Humans
;
Mice
;
Rats
;
Bone Remodeling/physiology*
;
Caspase 1
;
Periodontal Ligament
;
Pyroptosis
;
Tooth Movement Techniques
4.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
5.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
6.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
7.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
8.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
9.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
10.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.

Result Analysis
Print
Save
E-mail