1.Association of metabolic dysfunction-associated fatty liver disease with coronary artery calcification among Filipino patients in a tertiary hospital in Cebu City
Mary Grace S. Nepomuceno ; Michael Albert M. Diy ; Aileen Mae L. Catapang
Philippine Journal of Internal Medicine 2025;63(1):39-44
BACKGROUND:
Non-alcoholic fatty liver disease (NAFLD), now known as Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD), is linked to cardiovascular disease. This renaming emphasizes the role of metabolic problems. Coronary artery calcification (CAC) reflects early coronary artery disease, but data on the MAFLD-CAC link is limited.
OBJECTIVE:
To demonstrate the association between metabolic dysfunction-associated fatty liver disease (MAFLD) based on its criteria and coronary artery calcification, as measured by CT CAC score.
METHODS:
This single-center retrospective study involved adult Filipino patients who underwent CT CAC scoring between January 2021 and January 2023. Clinical and laboratory data were obtained via review of electronic records.
RESULTS:
This study involved 147 patients with an average age of 62 years, primarily females (57.14%), and mostly falling into the Obese-Class I category (31.29%). The most common comorbidities were hypertension (95.24%), dyslipidemia (62.59%), and diabetes mellitus (38.1%). In terms of CAC scores using the CT Agatston method, majority (30.61%) had low calcium buildup (Stage 2 with scores between 1-99). Approximately 26.53% had higher liver fat content with liver HU below 40, while 73.47% had lower liver fat content with HU equal to or greater than 40. Furthermore, 25.17% of patients with fatty livers and other risk factors were diagnosed with MAFLD, while 74.83% were not. The p-value indicated a significant difference in proportions, suggesting a lower proportion of MAFLD among those who had undergone CT CAC scoring. However, the Pearson Chi-Square statistic (4.051) and the p-value (0.256) indicated no statistically significant association between MAFLD and CT CAC.
CONCLUSION
The study found a notably lower proportion of MAFLD diagnoses in patients who underwent CT CAC scoring. Additionally, there was no statistically significant link between MAFLD and CT CAC.
Cardiovascular Diseases
;
Coronary Artery Disease
;
Fatty Liver, Alcoholic
2.The association of Fibrosis-4 (FIB 4) index with chronic kidney disease among type 2 diabetes mellitus patients with concomitant non-alcoholic fatty liver disease: A single center cross-sectional study
Antonio O. Pescador jr. ; Gabriel V. Jasul jr. ; Oliver Allan C. Dampil ; Juliet L. Gopez-cervantes ; Luz Margaret A. Escueta
Philippine Journal of Internal Medicine 2025;63(2):138-145
BACKGROUND
Non-alcoholic fatty liver disease (NAFLD) is prevalent in patients with Type 2 Diabetes Mellitus (T2DM) and is associated with chronic kidney disease (CKD). The aim of this cross-sectional study was to determine the association of Fibrosis-4 (FIB-4) index with CKD among T2DM patients with concomitant NAFLD.
METHODOLOGYA single center, analytical cross-sectional study was conducted among 216 T2DM patients with concomitant NAFLD. Clinical data were obtained via retrospective review of medical charts. The outcome of interest was CKD which was based on self-report obtained from medical charts or estimated Glomerular Filtration Rate (eGFR)RESULTS
Higher FIB-4 index was found to be significantly associated with CKD. Patients with FIB-4 index of 1.45-3.25 (moderate risk) and >3.25 (high risk) have about 3 times higher odds of CKD. However, after controlling for the significant confounders, only those who belong to high-risk group was found to be associated with CKD.
CONCLUSIONThis study has demonstrated that FIB4 index > 3.25, an index of liver fibrosis, is significantly associated with development of CKD in T2DM patients with concomitant NAFLD.
Human ; Diabetes Mellitus ; Non-alcoholic Fatty Liver Disease ; Chronic Kidney Diseases ; Renal Insufficiency, Chronic
3.Global and Chinese burden of non-alcoholic fatty liver disease in chronic liver disease: Findings from the Global Burden of Disease Study 2021.
Xinyu ZHAO ; Dong XU ; Wei JI ; Zhengzhao LU ; Cheng HUANG ; Jingjie ZHAO ; Tingting XIAO ; Dongxu WANG ; Yuanyuan KONG ; Jidong JIA ; Hong YOU
Chinese Medical Journal 2025;138(14):1741-1751
BACKGROUND:
Chronic liver disease (CLD), mainly non-alcoholic fatty liver disease (NAFLD), is a significant public health concern worldwide. This study aims to quantify the burden of NAFLD in CLD globally and within China, using data from the Global Burden of Disease (GBD) Study 2021, providing crucial insights for global and local health policies.
METHODS:
The study used comprehensive data from the GBD study 2021. It included estimates of prevalence, incidence, mortality, and disability-adjusted life years (DALYs). Age-standardized rates and average annual percent change (AAPC) from 2011 to 2021 were reported. A meticulous decomposition analysis was conducted.
RESULTS:
In 2021, there were 1582.5 million prevalent cases, 47.6 million incident cases, 1.4 million deaths, and 44.4 million DALYs attributable to CLD, globally. Among these, NAFLD has emerged as the predominant cause, accounting for 78.0% of all prevalent CLD cases (1234.7 million) and 87.2% of incident cases (41.5 million). Correspondingly, NAFLD had the highest age-standardized prevalence (15,017.5 per 100,000 population) and incidence (876.5 per 100,000 population) rates among CLDs. In addition, China's CLD age-standardized prevalence rate was 21,659.5 per 100,000 population, and the age-standardized incidence rate was 752.6 per 100,000 population, higher than the global average. From 2011 to 2021, the global prevalence rate of CLD increased slowly (AAPC = 0.17), consistent with the trend in China (AAPC = 0.23). Furthermore, the prevalence rate of NAFLD rose significantly in China (AAPC = 1.30) compared with the global average (AAPC = 0.91). Decomposition analysis also showed the worldwide increase in deaths and DALYs for NAFLD, which were primarily attributable to population growth and aging.
CONCLUSIONS
The burden of CLD and NAFLD remains substantial globally and within China in terms of high prevalence and incidence. As such, this underscores the need for targeted prevention and treatment strategies. These findings emphasize the importance of continued surveillance and research to mitigate the growing impact of liver diseases on global and Chinese health systems.
Humans
;
Non-alcoholic Fatty Liver Disease/mortality*
;
Global Burden of Disease
;
China/epidemiology*
;
Prevalence
;
Male
;
Disability-Adjusted Life Years
;
Female
;
Incidence
;
Middle Aged
;
Chronic Disease
;
Adult
;
Quality-Adjusted Life Years
;
Liver Diseases/epidemiology*
;
Aged
4.Advances in the function and mechanisms of stearoyl-CoA desaturase 1 in metabolic diseases.
Qin SUN ; Xiao-Rui XING ; Cheng LIU ; Dan-Dan JIA ; Ru WANG
Acta Physiologica Sinica 2025;77(3):545-562
Metabolic diseases characterized by an imbalance in energy homeostasis represent a significant global health challenge. Individuals with metabolic diseases often suffer from complications related to disorders in lipid metabolism, such as obesity and non-alcoholic fatty liver disease (NAFLD). Understanding core genes involved in lipid metabolism can advance strategies for the prevention and treatment of these conditions. Stearoyl-CoA desaturase 1 (SCD1) is a key enzyme in lipid metabolism that converts saturated fatty acids into monounsaturated fatty acids. SCD1 plays a crucial regulatory role in numerous physiological and pathological processes, including energy homeostasis, glycolipid metabolism, autophagy, and inflammation. Abnormal transcription and epigenetic activation of Scd1 contribute to abnormal lipid accumulation by regulating multiple signaling axes, thereby promoting the development of obesity, NAFLD, diabetes, and cancer. This review comprehensively summarizes the key role of SCD1 as a metabolic hub gene in various (patho)physiological contexts. Further it explores potential translational avenues, focusing on the development of novel SCD1 inhibitors across interdisciplinary fields, aiming to provide new insights and approaches for targeting SCD1 in the prevention and treatment of metabolic diseases.
Stearoyl-CoA Desaturase/metabolism*
;
Humans
;
Metabolic Diseases/physiopathology*
;
Lipid Metabolism/physiology*
;
Animals
;
Obesity/enzymology*
;
Non-alcoholic Fatty Liver Disease
5.Research progress in mechanisms of traditional Chinese medicine polysaccharides in prevention and treatment of alcoholic liver disease.
Yu-Fan CHEN ; He JIANG ; Qing MA ; Qi-Han LUO ; Shuo HUANG ; Jiang QIU ; Fu-Zhe CHEN ; Zi-Yi SHAN ; Ping QIU
China Journal of Chinese Materia Medica 2025;50(2):356-362
Alcoholic liver disease(ALD), a major cause of chronic liver disease worldwide, poses a serious threat to human health. Despite the availability of various drugs for treating ALD, their efficacy is often uncertain, necessitating the search for new therapeutic approaches. Traditional Chinese medicine polysaccharides have garnered increasing attention in recent years due to their versatility, high efficiency, and low side effects, and they have demonstrated significant potential in preventing and treating ALD. Emerging studies have suggested that these polysaccharides exert their therapeutic effects through multiple mechanisms, including the inhibition of oxidative stress and the regulation of lipid metabolism, gut microbiota, and programmed cell death. This review summarizes the recent research progress in the pharmacological effects and regulatory mechanisms of traditional Chinese medicine polysaccharides in treating ALD, aiming to provide a scientific basis and theoretical support for their application in the prevention and treatment of ALD.
Humans
;
Liver Diseases, Alcoholic/metabolism*
;
Polysaccharides/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Oxidative Stress/drug effects*
;
Medicine, Chinese Traditional
;
Gastrointestinal Microbiome/drug effects*
;
Lipid Metabolism/drug effects*
6.Advances in inflammaging in liver disease.
Yanping XU ; Luyi CHEN ; Weili LIU ; Liying CHEN
Journal of Zhejiang University. Medical sciences 2025;54(1):90-98
Inflammaging is a process of cellular dysfunction associated with chronic inflammation, which plays a significant role in the onset and progression of liver diseases. Research on its mechanisms has become a hotspot. In viral hepatitis, inflammaging primarily involve oxidative stress, cell apoptosis and necrosis, as well as gut microbiota dysbiosis. In non-alcoholic fatty liver disease, inflammaging is more complex, involving insulin resistance, fat deposition, lipid metabolism disorders, gut microbiota dysbiosis, and abnormalities in NAD+ metabolism. In liver tumors, inflammaging is characterized by weakening of tumor suppressive mechanisms, remodeling of the liver microenvironment, metabolic reprogramming, and enhanced immune evasion. Therapeutic strategies targeting inflammaging have been developing recently, and antioxidant therapy, metabolic disorder improvement, and immunotherapy are emerging as important interventions for liver diseases. This review focuses on the mechanisms of inflammaging in liver diseases, aiming to provide novel insights for the prevention and treatment of liver diseases.
Humans
;
Liver Diseases/pathology*
;
Inflammation
;
Oxidative Stress
;
Non-alcoholic Fatty Liver Disease
;
Liver Neoplasms
;
Gastrointestinal Microbiome
7.Research progress in the role of gut microbiota in ethanol metabolism.
Yuchun YANG ; Xiaojie ZHANG ; Ti CHEN
Journal of Central South University(Medical Sciences) 2025;50(3):501-510
In recent years, gut microbiota has been increasingly recognized as a key player in ethanol metabolism and the development of related diseases. On one hand, ethanol intake directly affects the gut, leading to significant alterations in microbial diversity and composition. On the other hand, gut microbiota influences ethanol-induced damage to various organs, especially the liver, through multiple metabolic byproducts (such as short-chain fatty acids like butyrate, propionate, and acetate), modulation of immune responses, alteration of intestinal barrier function, and regulation of ethanol-metabolizing enzymes. Given the close association between gut microbiota and ethanol metabolism, the gut microbiome presents a promising therapeutic target for alcohol-related liver diseases. This review summarizes recent advances in understanding how gut microbiota affects ethanol metabolism, aiming to elucidate its role in the onset and progression of ethanol-related diseases and to provide a theoretical basis and novel targets for microbiota-based interventions.
Gastrointestinal Microbiome/physiology*
;
Ethanol/metabolism*
;
Humans
;
Fatty Acids, Volatile/metabolism*
;
Liver Diseases, Alcoholic/metabolism*
;
Animals
;
Alcohol Drinking/metabolism*
8.Interplay between gut microbiota and intestinal lipid metabolism:mechanisms and implications.
Journal of Zhejiang University. Science. B 2025;26(10):961-971
The gut microbiota is an indispensable symbiotic entity within the human holobiont, serving as a critical regulator of host lipid metabolism homeostasis. Therefore, it has emerged as a central subject of research in the pathophysiology of metabolic disorders. This microbial consortium orchestrates key aspects of host lipid dynamics-including absorption, metabolism, and storage-through multifaceted mechanisms such as the enzymatic processing of dietary polysaccharides, the facilitation of long-chain fatty acid uptake by intestinal epithelial cells (IECs), and the bidirectional modulation of adipose tissue functionality. Mounting evidence underscores that gut microbiota-derived metabolites not only directly mediate canonical lipid metabolic pathways but also interface with host immune pathways, epigenetic machinery, and circadian regulatory systems, thereby establishing an intricate crosstalk that coordinates systemic metabolic outputs. Perturbations in microbial composition (dysbiosis) drive pathological disruptions to lipid homeostasis, serving as a pathogenic driver for conditions such as obesity, hyperlipidemia, and non-alcoholic fatty liver disease (NAFLD). This review systematically examines the emerging mechanistic insights into the gut microbiota-mediated regulation of intestinal lipid metabolism, while it elucidates its translational implications for understanding metabolic disease pathogenesis and developing targeted therapies.
Humans
;
Gastrointestinal Microbiome/physiology*
;
Lipid Metabolism
;
Animals
;
Intestinal Mucosa/metabolism*
;
Homeostasis
;
Dysbiosis
;
Obesity/metabolism*
;
Intestines/microbiology*
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Metabolic Diseases/metabolism*
9.Roles of the Keap1/Nrf2 pathway and mitophagy in liver diseases.
Qihui ZHOU ; Panpan CEN ; Zhi CHEN ; Jie JIN
Journal of Zhejiang University. Science. B 2025;26(10):972-994
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an intracellular transcription factor that helps protect against oxidative stress in different types of cells under pathological conditions. Mitochondria are vital organelles that function in diverse metabolic processes in the body, including redox reactions, lipid metabolism, and cell death. Mitophagy, a specific form of autophagy for damaged mitochondria, plays a critical role in the pathophysiology of liver diseases. In this review, we explain in detail the roles of the Nrf2 signaling pathway and mitophagy, and the relationship between them, in various hepatic diseases (nonalcoholic fatty liver disease, viral hepatitis, alcoholic liver disease, drug-induced liver injury, autoimmune hepatitis, hepatic ischemia‒reperfusion injury, and liver cancer). We also offer some potential insights and treatments relevant to clinical applications.
Humans
;
NF-E2-Related Factor 2/metabolism*
;
Mitophagy/physiology*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Signal Transduction
;
Liver Diseases/etiology*
;
Animals
;
Oxidative Stress
;
Mitochondria/metabolism*
;
Non-alcoholic Fatty Liver Disease
;
Liver Neoplasms
10.Ferroptosis and liver diseases.
Xin LI ; Liang TAO ; Meijuan ZHONG ; Qian WU ; Junjia MIN ; Fudi WANG
Journal of Zhejiang University. Medical sciences 2024;53(6):747-755
As the central organ of metabolism, the liver plays a pivotal role in the regulation of the synthesis and metabolism of various nutrients within the body. Ferroptosis, as a newly discovered type of programmed cell death caused by the accumulation of iron-dependent lipid peroxides, is involved in the physiological and pathological processes of a variety of acute and chronic liver diseases. Ferroptosis can accelerate the pathogenetic process of acute liver injury, metabolic associated fatty liver disease, alcoholic liver disease, viral hepatitis, and autoimmune hepatitis; while it can slower disease progression in advanced liver fibrosis and hepatocellular carcinoma. This suggests that targeted regulation of ferroptosis may impact the occurrence and development of various liver diseases. This article reviews the latest research progress of ferroptosis in various liver diseases, including acute liver injury, metabolic associated fatty liver disease, alcoholic liver disease, viral hepatitis, autoimmune hepatitis, liver fibrosis and hepatocellular carcinoma. It aims to provide insights for the prevention and treatment of acute and chronic liver diseases through targeting ferroptosis.
Humans
;
Liver Diseases/etiology*
;
Ferroptosis/physiology*
;
Liver Neoplasms/pathology*
;
Carcinoma, Hepatocellular/pathology*
;
Liver Cirrhosis/etiology*
;
Liver/pathology*
;
Hepatitis, Autoimmune/metabolism*
;
Liver Diseases, Alcoholic/metabolism*


Result Analysis
Print
Save
E-mail