1.Interplay between gut microbiota and intestinal lipid metabolism:mechanisms and implications.
Journal of Zhejiang University. Science. B 2025;26(10):961-971
The gut microbiota is an indispensable symbiotic entity within the human holobiont, serving as a critical regulator of host lipid metabolism homeostasis. Therefore, it has emerged as a central subject of research in the pathophysiology of metabolic disorders. This microbial consortium orchestrates key aspects of host lipid dynamics-including absorption, metabolism, and storage-through multifaceted mechanisms such as the enzymatic processing of dietary polysaccharides, the facilitation of long-chain fatty acid uptake by intestinal epithelial cells (IECs), and the bidirectional modulation of adipose tissue functionality. Mounting evidence underscores that gut microbiota-derived metabolites not only directly mediate canonical lipid metabolic pathways but also interface with host immune pathways, epigenetic machinery, and circadian regulatory systems, thereby establishing an intricate crosstalk that coordinates systemic metabolic outputs. Perturbations in microbial composition (dysbiosis) drive pathological disruptions to lipid homeostasis, serving as a pathogenic driver for conditions such as obesity, hyperlipidemia, and non-alcoholic fatty liver disease (NAFLD). This review systematically examines the emerging mechanistic insights into the gut microbiota-mediated regulation of intestinal lipid metabolism, while it elucidates its translational implications for understanding metabolic disease pathogenesis and developing targeted therapies.
Humans
;
Gastrointestinal Microbiome/physiology*
;
Lipid Metabolism
;
Animals
;
Intestinal Mucosa/metabolism*
;
Homeostasis
;
Dysbiosis
;
Obesity/metabolism*
;
Intestines/microbiology*
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Metabolic Diseases/metabolism*
2.Roles of the Keap1/Nrf2 pathway and mitophagy in liver diseases.
Qihui ZHOU ; Panpan CEN ; Zhi CHEN ; Jie JIN
Journal of Zhejiang University. Science. B 2025;26(10):972-994
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an intracellular transcription factor that helps protect against oxidative stress in different types of cells under pathological conditions. Mitochondria are vital organelles that function in diverse metabolic processes in the body, including redox reactions, lipid metabolism, and cell death. Mitophagy, a specific form of autophagy for damaged mitochondria, plays a critical role in the pathophysiology of liver diseases. In this review, we explain in detail the roles of the Nrf2 signaling pathway and mitophagy, and the relationship between them, in various hepatic diseases (nonalcoholic fatty liver disease, viral hepatitis, alcoholic liver disease, drug-induced liver injury, autoimmune hepatitis, hepatic ischemia‒reperfusion injury, and liver cancer). We also offer some potential insights and treatments relevant to clinical applications.
Humans
;
NF-E2-Related Factor 2/metabolism*
;
Mitophagy/physiology*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Signal Transduction
;
Liver Diseases/etiology*
;
Animals
;
Oxidative Stress
;
Mitochondria/metabolism*
;
Non-alcoholic Fatty Liver Disease
;
Liver Neoplasms
3.Food-derived bioactive peptides: health benefits, structure‒activity relationships, and translational prospects.
Hongda CHEN ; Jiabei SUN ; Haolie FANG ; Yuanyuan LIN ; Han WU ; Dongqiang LIN ; Zhijian YANG ; Quan ZHOU ; Bingxiang ZHAO ; Tianhua ZHOU ; Jianping WU ; Shanshan LI ; Xiangrui LIU
Journal of Zhejiang University. Science. B 2025;26(11):1037-1058
Food-derived bioactive peptides (FBPs), particularly those with ten or fewer amino acid residues and a molecular weight below 1300 Da, have gained increasing attention for their safe, diverse structures and specific biological activities. The development of FBP-based functional foods and potential medications depends on understanding their structure‒activity relationships (SARs), stability, and bioavailability properties. In this review, we provide an in-depth overview of the roles of FBPs in treating various diseases, including Alzheimer's disease, hypertension, type 2 diabetes mellitus, liver diseases, and inflammatory bowel diseases, based on the literature from July 2017 to Mar. 2023. Subsequently, attention is directed toward elucidating the associations between the bioactivities and structural characteristics (e.g., molecular weight and the presence of specific amino acids within sequences and compositions) of FBPs. We also discuss in silico approaches for FBP screening and their limitations. Finally, we summarize recent advancements in formulation techniques to improve the bioavailability of FBPs in the food industry, thereby contributing to healthcare applications.
Humans
;
Peptides/therapeutic use*
;
Structure-Activity Relationship
;
Functional Food
;
Diabetes Mellitus, Type 2/drug therapy*
;
Biological Availability
;
Alzheimer Disease/drug therapy*
;
Inflammatory Bowel Diseases/drug therapy*
;
Hypertension/drug therapy*
;
Liver Diseases/drug therapy*
;
Bioactive Peptides, Dietary
4.Surgical manifestations of hepatobiliarypancreatic tuberculosis (HBPTB)
Apolinario Ericson B. Berberabe ; Daniel Ernest L. Florendo
Acta Medica Philippina 2025;59(Early Access 2025):1-6
BACKGROUND AND OBJECTIVES
Hepatobiliarypancreatic tuberculosis (HBPTB) is a less common form of tuberculosis that often presents as malignancy or lithiasis. Advances in diagnostics and minimally invasive procedures have led to the detection of more patients with milder forms of TB requiring surgical management. Due to the low incidence rates and lack of standardized approaches, additional studies are needed to improve patient outcomes. This study examined the risk factors, diagnostic methods, and treatments for HBPTB patients at the University of the Philippines – Philippine General Hospital (UP-PGH) from January 1, 2014 to December 31, 2021.
METHODSThis retrospective descriptive study utilized our institutional database to identify patients who underwent a surgical procedure for HBPTB and their associated risk factors. Inclusion criteria required biopsy or microbiologic proof of tuberculous involvement of the biliary tract or nearby structures.
RESULTSAmong a total of 45 patients, the most common admitting diagnosis were HBP tuberculosis (37.8%) and malignancy (35.6%). 47.6% of patients had a previous or concurrent TB exposure. Sixty percent had subclinical malnutrition indicated by normal weight and low albumin. The liver (37.8%) and the bile ducts (33.3%) were the most common organs involved. The most common surgical procedures done were ultrasound-guided liver biopsy, biliary enteric anastomosis, percutaneous transhepatic biliary drainage (PTBD), and endoscopic retrograde cholangiopancreatography with or without stenting (ERCP).
CONCLUSIONSThis study provides additional data for clinicians to tailor diagnostic and treatment plans accordingly. Striking a balance between surgical procedures and appropriate anti-tuberculous therapy (ATT) is essential for successful treatment. Local data can be useful to help identify tuberculosis patterns unique to Filipinos and highlight socio-economic factors contributing to this rare presentation of TB.
Human ; Tuberculosis, Extrapulmonary ; Biliary Tract Diseases ; General Surgery ; Acute Care Surgery ; Liver Diseases ; Pancreas
5.Association of metabolic dysfunction-associated fatty liver disease with coronary artery calcification among Filipino patients in a tertiary hospital in Cebu City
Mary Grace S. Nepomuceno ; Michael Albert M. Diy ; Aileen Mae L. Catapang
Philippine Journal of Internal Medicine 2025;63(1):39-44
BACKGROUND:
Non-alcoholic fatty liver disease (NAFLD), now known as Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD), is linked to cardiovascular disease. This renaming emphasizes the role of metabolic problems. Coronary artery calcification (CAC) reflects early coronary artery disease, but data on the MAFLD-CAC link is limited.
OBJECTIVE:
To demonstrate the association between metabolic dysfunction-associated fatty liver disease (MAFLD) based on its criteria and coronary artery calcification, as measured by CT CAC score.
METHODS:
This single-center retrospective study involved adult Filipino patients who underwent CT CAC scoring between January 2021 and January 2023. Clinical and laboratory data were obtained via review of electronic records.
RESULTS:
This study involved 147 patients with an average age of 62 years, primarily females (57.14%), and mostly falling into the Obese-Class I category (31.29%). The most common comorbidities were hypertension (95.24%), dyslipidemia (62.59%), and diabetes mellitus (38.1%). In terms of CAC scores using the CT Agatston method, majority (30.61%) had low calcium buildup (Stage 2 with scores between 1-99). Approximately 26.53% had higher liver fat content with liver HU below 40, while 73.47% had lower liver fat content with HU equal to or greater than 40. Furthermore, 25.17% of patients with fatty livers and other risk factors were diagnosed with MAFLD, while 74.83% were not. The p-value indicated a significant difference in proportions, suggesting a lower proportion of MAFLD among those who had undergone CT CAC scoring. However, the Pearson Chi-Square statistic (4.051) and the p-value (0.256) indicated no statistically significant association between MAFLD and CT CAC.
CONCLUSION
The study found a notably lower proportion of MAFLD diagnoses in patients who underwent CT CAC scoring. Additionally, there was no statistically significant link between MAFLD and CT CAC.
Cardiovascular Diseases
;
Coronary Artery Disease
;
Fatty Liver, Alcoholic
6.The association of Fibrosis-4 (FIB 4) index with chronic kidney disease among type 2 diabetes mellitus patients with concomitant non-alcoholic fatty liver disease: A single center cross-sectional study
Antonio O. Pescador jr. ; Gabriel V. Jasul jr. ; Oliver Allan C. Dampil ; Juliet L. Gopez-cervantes ; Luz Margaret A. Escueta
Philippine Journal of Internal Medicine 2025;63(2):138-145
BACKGROUND
Non-alcoholic fatty liver disease (NAFLD) is prevalent in patients with Type 2 Diabetes Mellitus (T2DM) and is associated with chronic kidney disease (CKD). The aim of this cross-sectional study was to determine the association of Fibrosis-4 (FIB-4) index with CKD among T2DM patients with concomitant NAFLD.
METHODOLOGYA single center, analytical cross-sectional study was conducted among 216 T2DM patients with concomitant NAFLD. Clinical data were obtained via retrospective review of medical charts. The outcome of interest was CKD which was based on self-report obtained from medical charts or estimated Glomerular Filtration Rate (eGFR)RESULTS
Higher FIB-4 index was found to be significantly associated with CKD. Patients with FIB-4 index of 1.45-3.25 (moderate risk) and >3.25 (high risk) have about 3 times higher odds of CKD. However, after controlling for the significant confounders, only those who belong to high-risk group was found to be associated with CKD.
CONCLUSIONThis study has demonstrated that FIB4 index > 3.25, an index of liver fibrosis, is significantly associated with development of CKD in T2DM patients with concomitant NAFLD.
Human ; Diabetes Mellitus ; Non-alcoholic Fatty Liver Disease ; Chronic Kidney Diseases ; Renal Insufficiency, Chronic
7.Mechanism of action of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome and its regulation in liver injury.
Yifan LU ; Tianyu WANG ; Bo YU ; Kang XIA ; Jiayu GUO ; Yiting LIU ; Xiaoxiong MA ; Long ZHANG ; Jilin ZOU ; Zhongbao CHEN ; Jiangqiao ZHOU ; Tao QIU
Chinese Medical Journal 2025;138(9):1061-1071
Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) is a cytosolic pattern recognition receptor that recognizes multiple pathogen-associated molecular patterns and damage-associated molecular patterns. It is a cytoplasmic immune factor that responds to cellular stress signals, and it is usually activated after infection or inflammation, forming an NLRP3 inflammasome to protect the body. Aberrant NLRP3 inflammasome activation is reportedly associated with some inflammatory diseases and metabolic diseases. Recently, there have been mounting indications that NLRP3 inflammasomes play an important role in liver injuries caused by a variety of diseases, specifically hepatic ischemia/reperfusion injury, hepatitis, and liver failure. Herein, we summarize new research pertaining to NLRP3 inflammasomes in hepatic injury, hepatitis, and liver failure. The review addresses the potential mechanisms of action of the NLRP3 inflammasome, and its regulation in these liver diseases.
Humans
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammasomes/physiology*
;
Animals
;
Liver Diseases/metabolism*
;
Liver/metabolism*
;
Reperfusion Injury/metabolism*
8.Global and Chinese burden of non-alcoholic fatty liver disease in chronic liver disease: Findings from the Global Burden of Disease Study 2021.
Xinyu ZHAO ; Dong XU ; Wei JI ; Zhengzhao LU ; Cheng HUANG ; Jingjie ZHAO ; Tingting XIAO ; Dongxu WANG ; Yuanyuan KONG ; Jidong JIA ; Hong YOU
Chinese Medical Journal 2025;138(14):1741-1751
BACKGROUND:
Chronic liver disease (CLD), mainly non-alcoholic fatty liver disease (NAFLD), is a significant public health concern worldwide. This study aims to quantify the burden of NAFLD in CLD globally and within China, using data from the Global Burden of Disease (GBD) Study 2021, providing crucial insights for global and local health policies.
METHODS:
The study used comprehensive data from the GBD study 2021. It included estimates of prevalence, incidence, mortality, and disability-adjusted life years (DALYs). Age-standardized rates and average annual percent change (AAPC) from 2011 to 2021 were reported. A meticulous decomposition analysis was conducted.
RESULTS:
In 2021, there were 1582.5 million prevalent cases, 47.6 million incident cases, 1.4 million deaths, and 44.4 million DALYs attributable to CLD, globally. Among these, NAFLD has emerged as the predominant cause, accounting for 78.0% of all prevalent CLD cases (1234.7 million) and 87.2% of incident cases (41.5 million). Correspondingly, NAFLD had the highest age-standardized prevalence (15,017.5 per 100,000 population) and incidence (876.5 per 100,000 population) rates among CLDs. In addition, China's CLD age-standardized prevalence rate was 21,659.5 per 100,000 population, and the age-standardized incidence rate was 752.6 per 100,000 population, higher than the global average. From 2011 to 2021, the global prevalence rate of CLD increased slowly (AAPC = 0.17), consistent with the trend in China (AAPC = 0.23). Furthermore, the prevalence rate of NAFLD rose significantly in China (AAPC = 1.30) compared with the global average (AAPC = 0.91). Decomposition analysis also showed the worldwide increase in deaths and DALYs for NAFLD, which were primarily attributable to population growth and aging.
CONCLUSIONS
The burden of CLD and NAFLD remains substantial globally and within China in terms of high prevalence and incidence. As such, this underscores the need for targeted prevention and treatment strategies. These findings emphasize the importance of continued surveillance and research to mitigate the growing impact of liver diseases on global and Chinese health systems.
Humans
;
Non-alcoholic Fatty Liver Disease/mortality*
;
Global Burden of Disease
;
China/epidemiology*
;
Prevalence
;
Male
;
Disability-Adjusted Life Years
;
Female
;
Incidence
;
Middle Aged
;
Chronic Disease
;
Adult
;
Quality-Adjusted Life Years
;
Liver Diseases/epidemiology*
;
Aged
9.Research progress on NCOA4-mediated ferritinophagy and related diseases.
Chen JIA ; Hong-Ji LIN ; Fang CUI ; Rui LU ; Yi-Ting ZHANG ; Zhi-Qin PENG ; Min SHI
Acta Physiologica Sinica 2025;77(1):194-208
Nuclear receptor co-activator 4 (NCOA4) acts as a selective cargo receptor that binds to ferritin, a cytoplasmic iron storage complex. By mediating ferritinophagy, NCOA4 regulates iron metabolism and releases free iron in the body, thus playing a crucial role in a variety of biological processes, including growth, development, and metabolism. Recent studies have shown that NCOA4-mediated ferritinophagy is closely associated with the occurrence and development of iron metabolism-related diseases, such as liver fibrosis, renal cell carcinoma, and neurodegenerative diseases. In addition, a number of clinical drugs have been identified to modulate NCOA4-mediated ferritinophagy, significantly affecting disease progression and treatment efficacy. This paper aims to review the current research progress on the role of NCOA4-mediated ferritinophagy in related diseases, in order to provide new ideas for targeted clinical therapy.
Humans
;
Nuclear Receptor Coactivators/physiology*
;
Ferritins/metabolism*
;
Animals
;
Neurodegenerative Diseases/metabolism*
;
Iron/metabolism*
;
Autophagy/physiology*
;
Liver Cirrhosis/metabolism*
;
Carcinoma, Renal Cell/metabolism*
;
Kidney Neoplasms/physiopathology*
10.Advances in the function and mechanisms of stearoyl-CoA desaturase 1 in metabolic diseases.
Qin SUN ; Xiao-Rui XING ; Cheng LIU ; Dan-Dan JIA ; Ru WANG
Acta Physiologica Sinica 2025;77(3):545-562
Metabolic diseases characterized by an imbalance in energy homeostasis represent a significant global health challenge. Individuals with metabolic diseases often suffer from complications related to disorders in lipid metabolism, such as obesity and non-alcoholic fatty liver disease (NAFLD). Understanding core genes involved in lipid metabolism can advance strategies for the prevention and treatment of these conditions. Stearoyl-CoA desaturase 1 (SCD1) is a key enzyme in lipid metabolism that converts saturated fatty acids into monounsaturated fatty acids. SCD1 plays a crucial regulatory role in numerous physiological and pathological processes, including energy homeostasis, glycolipid metabolism, autophagy, and inflammation. Abnormal transcription and epigenetic activation of Scd1 contribute to abnormal lipid accumulation by regulating multiple signaling axes, thereby promoting the development of obesity, NAFLD, diabetes, and cancer. This review comprehensively summarizes the key role of SCD1 as a metabolic hub gene in various (patho)physiological contexts. Further it explores potential translational avenues, focusing on the development of novel SCD1 inhibitors across interdisciplinary fields, aiming to provide new insights and approaches for targeting SCD1 in the prevention and treatment of metabolic diseases.
Stearoyl-CoA Desaturase/metabolism*
;
Humans
;
Metabolic Diseases/physiopathology*
;
Lipid Metabolism/physiology*
;
Animals
;
Obesity/enzymology*
;
Non-alcoholic Fatty Liver Disease


Result Analysis
Print
Save
E-mail