1.Aging and metabolic dysfunction-associated steatotic liver disease: a bidirectional relationship.
Frontiers of Medicine 2025;19(3):427-438
In recent years, aging and cellular senescence have triggered an increased interest in corresponding research fields. Evidence shows that the complex aging process is involved in the development of many chronic liver diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). In fact, aging has a tremendous effect on the liver, leading to a gradual decline in the metabolism, detoxification and immune functions of the liver, which in turn increases the risk of liver disease. These changes can be based on the aging of liver cells (hepatocytes, liver sinusoidal endothelial cells, hepatic stellate cells, and Kupffer cells). Similarly, patients with liver diseases exhibit increases in the aging phenotype and aging cells, often manifesting as faster physical functional decline, which is closely related to the promoting effect of liver disease on aging. This review summarizes the interplay between MASLD/MASH development and aging, aiming to reveal the complex relationships that exacerbate one another. Moreover, the corresponding schemes for delaying aging or treating diseases are discussed to provide a basis for the development of effective prevention and treatment strategies in the future.
Humans
;
Aging/physiology*
;
Fatty Liver/metabolism*
;
Liver/pathology*
;
Cellular Senescence
;
Animals
2.Ferroptosis and liver diseases.
Xin LI ; Liang TAO ; Meijuan ZHONG ; Qian WU ; Junjia MIN ; Fudi WANG
Journal of Zhejiang University. Medical sciences 2024;53(6):747-755
As the central organ of metabolism, the liver plays a pivotal role in the regulation of the synthesis and metabolism of various nutrients within the body. Ferroptosis, as a newly discovered type of programmed cell death caused by the accumulation of iron-dependent lipid peroxides, is involved in the physiological and pathological processes of a variety of acute and chronic liver diseases. Ferroptosis can accelerate the pathogenetic process of acute liver injury, metabolic associated fatty liver disease, alcoholic liver disease, viral hepatitis, and autoimmune hepatitis; while it can slower disease progression in advanced liver fibrosis and hepatocellular carcinoma. This suggests that targeted regulation of ferroptosis may impact the occurrence and development of various liver diseases. This article reviews the latest research progress of ferroptosis in various liver diseases, including acute liver injury, metabolic associated fatty liver disease, alcoholic liver disease, viral hepatitis, autoimmune hepatitis, liver fibrosis and hepatocellular carcinoma. It aims to provide insights for the prevention and treatment of acute and chronic liver diseases through targeting ferroptosis.
Humans
;
Liver Diseases/etiology*
;
Ferroptosis/physiology*
;
Liver Neoplasms/pathology*
;
Carcinoma, Hepatocellular/pathology*
;
Liver Cirrhosis/etiology*
;
Liver/pathology*
;
Hepatitis, Autoimmune/metabolism*
;
Liver Diseases, Alcoholic/metabolism*
3.Role of AMPKα2 in regulating the IRE1α-JNK pathway in metabolic dysfunction-associated fatty liver disease.
Shujie ZHAO ; Weilun FANG ; Yu WEI ; Jiahui MENG ; Qiao JIN ; Weijin FANG
Journal of Central South University(Medical Sciences) 2024;49(12):1891-1901
OBJECTIVES:
Over 25% of the global population is affected by metabolic dysfunction-associated fatty liver disease (MAFLD), yet its pathogenesis remains unclear. Endoplasmic reticulum stress (ERS) may be involved in the onset and progression of MAFLD. Adenosine 5'-monophosphate-activated protein kinase α2 (AMPKα2), a key regulator of hepatic energy metabolism, may influence MAFLD development via ERS modulation. This study aims to investigate the role of AMPKα2 in a high-fat diet-induced MAFLD mouse model and its regulatory effect on the inositol-requiring enzyme 1 alpha (IRE1α)-c-Jun N-terminal kinase (JNK) signaling pathway.
METHODS:
Liver-specific AMPKα2 knockout mice on a C57BL/6 background were generated and subjected to MAFLD induction. Mice were divided into four groups: wild-type control (WT+Chow, basic diet for 12 weeks), wild-type high-fat diet (WT+HFD, high-fat diet for 12 weeks), AMPKα2 knockout control (AMPKα2 KO+Chow), and AMPKα2 knockout high-fat diet (AMPKα2 KO+HFD). Blood glucose, lipid levels, and liver function were assessed post-treatment. Liver histology was analyzed using Oil Red O, hematoxylin-eosin, Masson, and Sirius Red staining. Western blotting was used to evaluate the expression of AMPKα2, ERS markers, autophagy, apoptosis, and ferroptosis-related proteins.
RESULTS:
Compared with the WT+Chow group, the WT+HFD group showed significantly elevated blood glucose, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels (all P<0.01); histological analyses revealed hepatic steatosis, vacuolization, and fibrosis, with a significantly increased non-alcoholic steatohepatitis activity score (NAS) (P<0.001). Phosphorylated IRE1α and the autophagy marker microtubule-associated protein light chain (LC) 3II/LC3I were markedly upregulated, while apoptotic proteins (Cleaved-Caspase 3, BAX, Bcl-2) and ferroptosis markers (SLC7A11, GPX4) showed no significant change (P>0.05). In the AMPKα2 KO+HFD group, blood glucose, ALT, and AST levels were significantly reduced compared to the WT+HFD group. Histological improvements were observed with reduced vacuolization and lipid accumulation. Expression of p-IRE1α, JNK, and LC3II/LC3I was significantly decreased (P<0.05).
CONCLUSIONS
Hepatic AMPKα2 knockout alleviates high-fat induced MAFLD, potentially by inhibiting the IRE1α-JNK pathway and reducing autophagy.
Animals
;
AMP-Activated Protein Kinases/physiology*
;
Protein Serine-Threonine Kinases/metabolism*
;
Mice, Knockout
;
Diet, High-Fat/adverse effects*
;
Mice, Inbred C57BL
;
Mice
;
Endoplasmic Reticulum Stress
;
Endoribonucleases/metabolism*
;
Male
;
Liver/pathology*
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
MAP Kinase Signaling System/physiology*
;
Fatty Liver/metabolism*
;
Signal Transduction
4.The expression and function of PD-L1 in CD133(+) human liver cancer stem-like cells.
Yu Di BAI ; Mao Lin SHI ; Si Qi LI ; Xiao Li WANG ; Jing Jing PENG ; Dai Jun ZHOU ; Fei Fan SUN ; Hua LI ; Chao WANG ; Min DU ; Tao ZHANG ; Dong LI
Chinese Journal of Oncology 2023;45(2):117-128
Objective: To investigate the expression of programmed death protein-ligand 1 (PD-L1) in liver cancer stem-like cells (LCSLC) and its effect on the characteristics of tumor stem cells and tumor biological function, to explore the upstream signaling pathway regulating PD-L1 expression in LCSLC and the downstream molecular mechanism of PD-L1 regulating stem cell characteristics, also tumor biological functions. Methods: HepG2 was cultured by sphere-formating method to obtain LCSLC. The expressions of CD133 and other stemness markers were detected by flow cytometry, western blot and real-time quantitative polymerase chain reaction (RT-qPCR) were used to detect the expressions of stemness markers and PD-L1. The biological functions of the LCSLC were tested by cell function assays, to confirm that the LCSLC has the characteristics of tumor stem cells. LCSLC was treated with cell signaling pathway inhibitors to identify relevant upstream signaling pathways mediating PD-L1 expression changes. The expression of PD-L1 in LCSLC was down regulated by small interfering RNA (siRNA), the expression of stem cell markers, tumor biological functions of LCSLC, and the changes of cell signaling pathways were detected. Results: Compared with HepG2 cells, the expression rate of CD133 in LCSLC was upregulated [(92.78±6.91)% and (1.40±1.77)%, P<0.001], the expressions of CD133, Nanog, Oct4A and Snail in LCSLC were also higher than those in HepG2 cells (P<0.05), the number of sphere-formating cells increased on day 7 [(395.30±54.05) and (124.70±19.30), P=0.001], cell migration rate increased [(35.41±6.78)% and (10.89±4.34)%, P=0.006], the number of transmembrane cells increased [(75.77±10.85) and (20.00±7.94), P=0.002], the number of cloned cells increased [(120.00±29.51) and (62.67±16.77), P=0.043]. Cell cycle experiments showed that LCSLC had significantly more cells in the G(0)/G(1) phase than those in HepG2 [(54.89±3.27) and (32.36±1.50), P<0.001]. The tumor formation experiment of mice showed that the weight of transplanted tumor in LCSLC group was (1.32±0.17)g, the volume is (1 779.0±200.2) mm(3), were higher than those of HepG2 cell [(0.31±0.06)g and (645.6±154.9)mm(3), P<0.001]. The expression level of PD-L1 protein in LCSLC was 1.88±0.52 and mRNA expression level was 2.53±0.62, both of which were higher than those of HepG2 cells (P<0.05). The expression levels of phosphorylation signal transduction and transcription activation factor 3 (p-STAT3) and p-Akt in LCSLC were higher than those in HepG2 cells (P<0.05). After the expression of p-STAT3 and p-Akt was down-regulated by inhibitor treatment, the expression of PD-L1 was also down-regulated (P<0.05). In contrast, the expression level of phosphorylated extracellular signal-regulated protein kinase 1/2 (p-ERK1/2) in LCSLC was lower than that in HepG2 cells (P<0.01), there was no significant change in PD-L1 expression after down-regulated by inhibitor treatment (P>0.05). After the expression of PD-L1 was knockdown by siRNA, the expressions of CD133, Nanog, Oct4A and Snail in LCSLC were decreased compared with those of siRNA-negative control (NC) group (P<0.05). The number of sphere-formating cells decreased [(45.33±12.01) and (282.00±29.21), P<0.001], the cell migration rate was lower than that in siRNA-NC group [(20.86±2.74)% and (46.73±15.43)%, P=0.046], the number of transmembrane cells decreased [(39.67±1.53) and (102.70±11.59), P=0.001], the number of cloned cells decreased [(57.67±14.57) and (120.70±15.04), P=0.007], the number of cells in G(0)/G(1) phase decreased [(37.68±2.51) and (57.27±0.92), P<0.001], the number of cells in S phase was more than that in siRNA-NC group [(30.78±0.52) and (15.52±0.83), P<0.001]. Tumor formation in mice showed that the tumor weight of shRNA-PD-L1 group was (0.47±0.12)g, the volume is (761.3±221.4)mm(3), were lower than those of shRNA-NC group [(1.57±0.45)g and (1 829.0±218.3)mm(3), P<0.001]. Meanwhile, the expression levels of p-STAT3 and p-Akt in siRNA-PD-L1 group were decreased (P<0.05), while the expression levels of p-ERK1/2 and β-catenin did not change significantly (P>0.05). Conclusion: Elevated PD-L1 expression in CD133(+) LCSLC is crucial to maintain stemness and promotes the tumor biological function of LCSLC.
Humans
;
Animals
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
B7-H1 Antigen/metabolism*
;
Ligands
;
Liver Neoplasms/pathology*
;
RNA, Small Interfering/metabolism*
;
Neoplastic Stem Cells/physiology*
;
Cell Line, Tumor
;
Cell Proliferation
5.NEK2 promotes the progression of liver cancer by resisting the cellular senescence.
Qian LEI ; Jiliang XIA ; Xiangling FENG ; Jiaojiao GUO ; Guancheng LI ; Wen ZHOU
Journal of Central South University(Medical Sciences) 2022;47(2):153-164
OBJECTIVES:
Liver cancer is the sixth most common malignant tumor in the world. Hepatocellular carcinoma (HCC) accounts for 85%-90% of all patients with liver cancer. It possesses the characteristics of insidious onset, rapid progression, early recurrence, easy drug resistance, and poor prognosis. NIMA related kinase 2 (NEK2) is a cell cycle regulating kinases, which regulates cell cycle in mitosis. Cellular senescence is a complex heterogeneous process, and is a stable form of cell cycle arrest that limits the proliferative potential of cells. This study aims to investigate the relationship between the expression level of NEK2 and the senescence in hepatoma cells, and to explore the effect of NEK2 expression on hepatoma cell senescence and the underlying molecular mechanism.
METHODS:
A total of 581 senescence-relevant genes were obtained from the GenAge website. The gene expression data of tumor tissues of 370 HCC patients were downloaded from the Cancer Genome Atlas database. The co-expression of NEK2 and aging-related genes was analyzed by R-package. KEGG was used to analyze the significant gene enrichment pathway of differentially expressed genes in NEK2 overexpression HEK293. The stable transfected cell lines with overexpression and knockdown of NEK2 were constructed in hepatoma cell line SMMC-7721 and HepG2, and senescence-associated β-galactosidase (SA-β-gal) staining was used to detect senescence, the cell proliferation was detected by CCK-8 method and clone formation experiment, the cell cycle was analyzed by flow cytometry, and the expression of proteins related to p53/p21, p16/Rb, and phosphatase and tensin homolog deleted on chromosome ten (PTEN)/Akt signal transduction pathway was detected by Western blotting.
RESULTS:
There were 320 senescence related genes co-expressed with NEK2. KEGG analysis showed that the senescence signaling pathway was significantly enriched in HEK293 cells with overexpression of NEK2.Compared with SMMC-7721 or HepG2 without knockdown of NEK2, the senescent cells of SMMC-7721 and HepG2 with knockdown of NEK2 were increased, cell proliferation and clone formation were decreased significantly, the percentage of cells in G0/G1 phase was increased, the expression levels of phospho-Akt (p-Akt) and phospho-Rb (p-Rb) protein were decreased significantly, and the expression level of p16 protein was increased significantly (all P<0.05). Compared with SMMC-7721 or HepG2 transfected with blank plasmid, the senescent cells of SMMC-7721 and HepG2 overexpressing NEK2 were decreased, the cell proliferation and clone formation were increased significantly, the percentage of cells in G0/G1 phase were decreased, the expression levels of p-Akt and p-Rb protein were increased significantly, and the expression level of p16 protein was decreased significantly (all P<0.05).
CONCLUSIONS
NEK2 may mediate the anti-aging effect of hepatoma cells through p16/Rb and PTEN/Akt signal transduction pathways, which provides a new theoretical basis for NEK2 to promote the progress of liver cancer and a new idea for the targeting treatment for liver cancer.
Carcinoma, Hepatocellular/pathology*
;
Cell Line, Tumor
;
Cell Proliferation/physiology*
;
Cellular Senescence/genetics*
;
HEK293 Cells
;
Humans
;
Liver Neoplasms/pathology*
;
NIMA-Related Kinases/genetics*
;
Proto-Oncogene Proteins c-akt/metabolism*
6.Immediate postoperative color Doppler ultrasonography on the diagnosis of hemorrhagic complications of liver biopsy and its directed compression hemostasis.
Guo Quan ZHANG ; Ling Yun ZHANG ; Guo Qing HAN ; Yu Hua ZHU ; Ai Min ZHENG
Chinese Journal of Hepatology 2022;30(3):285-289
Objective: To study the diagnostic value of immediate color Doppler ultrasonography on traumatic hepatic hemorrhage after tissue sampling with ultrasound-guided liver biopsy and the clinical effect of its-directed local compression hemostasis at puncture-site. Methods: 132 hospitalized patients with various liver diseases underwent ultrasound-guided hepatic puncture-biopsies, including 61 cases with diffuse parenchymal and 71 cases with focal liver lesions. Immediate postoperative color Doppler ultrasonography was performed following liver biopsy. Abnormal blood flow signal was observed at hepatic puncture biopsy site, and if there were hemorrhagic signals, ultrasound-directed local compression hemostasis was performed until the bleeding signal disappeared. F-test and Chi-square test were used for statistical analysis. Results: Immediate color Doppler ultrasonography showed traumatic hemorrhage in 36.1% (22/61) and 40.8% (29/71) cases of diffuse liver disease and focal liver disease group, respectively. All hemorrhagic signals were eventually disappeared after ultrasound-directed local compression hemostasis. The median hemostasis time was 2 min in both groups, and there was no statistically significant difference in bleeding rate and hemostasis time between the two groups (P>0.05). There were no serious complications and deaths. Conclusion: Traumatic hepatic hemorrhage along the needle puncture tract is a common accompanying condition during liver biopsy. Immediate postoperative color Doppler ultrasonography can trace bleeding signals in timely manner and direct effective compression hemostasis, so it should be used routinely to help avoid occurrence of severe hemorrhagic complications.
Biopsy
;
Hemorrhage/etiology*
;
Hemostasis/physiology*
;
Humans
;
Liver/pathology*
;
Liver Diseases/pathology*
;
Ultrasonography
;
Ultrasonography, Doppler, Color/adverse effects*
7.New observations on the effect of camellia oil on fatty liver disease in rats.
Journal of Zhejiang University. Science. B 2020;21(8):657-667
Camellia oil has become an important plant oil in China in recent years, but its effects on non-alcoholic fatty liver disease (NAFLD) have not been documented. In this study, the effects of camellia oil, soybean oil, and olive oil on NAFLD were evaluated by analyzing the fatty acid profiles of the plant oils, the serum lipids and lipoproteins of rats fed different oils, and by cytological and ultrastructural observation of the rats' hepatocytes. Analysis of fatty acid profiles showed that the polyunsaturated fatty acid (PUFA) n-6/n-3 ratio was 33.33 in camellia oil, 12.50 in olive oil, and 7.69 in soybean oil. Analyses of serum lipids and lipoproteins of rats showed that the levels of total cholesterol and low-density lipoprotein cholesterol in a camellia oil-fed group (COFG) were lower than those in an olive oil-fed group (OOFG) and higher than those in a soybean oil-fed group (SOFG). However, only the difference in total cholesterol between the COFG and SOFG was statistically significant. Cytological observation showed that the degree of lipid droplet (LD) accumulation in the hepatocytes in the COFG was lower than that in the OOFG, but higher than that in the SOFG. Ultrastructural analysis revealed that the size and number of the LDs in the hepatocytes of rats fed each of the three types of oil were related to the degree of damage to organelles, including the positions of nuclei and the integrity of mitochondria and endoplasmic reticulum. The results revealed that the effect of camellia oil on NAFLD in rats was greater than that of soybean oil, but less than that of olive oil. Although the overall trend was that among the three oil diets, those with a lower n-6/n-3 ratio were associated with a lower risk of NAFLD, and the effect of camellia oil on NAFLD was not entirely related to the n-6/n-3 ratio and may have involved other factors. This provides new insights into the effect of oil diets on NAFLD.
Animals
;
Camellia/chemistry*
;
Fatty Acids/analysis*
;
Hepatocytes/ultrastructure*
;
Lipid Droplets/physiology*
;
Lipids/blood*
;
Male
;
Non-alcoholic Fatty Liver Disease/pathology*
;
Plant Oils/administration & dosage*
;
Rats
;
Rats, Sprague-Dawley
8.Early use of dexamethasone increases Nr4a1 in Kupffer cells ameliorating acute liver failure in mice in a glucocorticoid receptor-dependent manner.
Jing-Wen DENG ; Qin YANG ; Xiao-Peng CAI ; Jia-Ming ZHOU ; Wei-Gao E ; Yan-Dong AN ; Qiu-Xian ZHENG ; Meng HONG ; Yan-Li REN ; Jun GUAN ; Gang WANG ; Shu-Jing LAI ; Zhi CHEN
Journal of Zhejiang University. Science. B 2020;21(9):727-739
BACKGROUND AND OBJECTIVE:
Acute liver failure (ALF) is a type of disease with high mortality and rapid progression with no specific treatment methods currently available. Glucocorticoids exert beneficial clinical effects on therapy for ALF. However, the mechanism of this effect remains unclear and when to use glucocorticoids in patients with ALF is difficult to determine. The purpose of this study was to investigate the specific immunological mechanism of dexamethasone (Dex) on treatment of ALF induced by lipopolysaccharide (LPS)/D-galactosamine (D-GaIN) in mice.
METHODS:
Male C57BL/6 mice were given LPS and D-GaIN by intraperitoneal injection to establish an animal model of ALF. Dex was administrated to these mice and its therapeutic effect was observed. Hematoxylin and eosin (H&E) staining was used to determine liver pathology. Multicolor flow cytometry, cytometric bead array (CBA) method, and next-generation sequencing were performed to detect changes of messenger RNA (mRNA) in immune cells, cytokines, and Kupffer cells, respectively.
RESULTS:
A mouse model of ALF can be constructed successfully using LPS/D-GaIN, which causes a cytokine storm in early disease progression. Innate immune cells change markedly with progression of liver failure. Earlier use of Dex, at 0 h rather than 1 h, could significantly improve the progression of ALF induced by LPS/D-GaIN in mice. Numbers of innate immune cells, especially Kupffer cells and neutrophils, increased significantly in the Dex-treated group. In vivo experiments indicated that the therapeutic effect of Dex is exerted mainly via the glucocorticoid receptor (Gr). Sequencing of Kupffer cells revealed that Dex could increase mRNA transcription level of nuclear receptor subfamily 4 group A member 1 (Nr4a1), and that this effect disappeared after Gr inhibition.
CONCLUSIONS
In LPS/D-GaIN-induced ALF mice, early administration of Dex improved ALF by increasing the numbers of innate immune cells, especially Kupffer cells and neutrophils. Gr-dependent Nr4a1 upregulation in Kupffer cells may be an important ALF effect regulated by Dex in this process.
Animals
;
Dexamethasone/therapeutic use*
;
Disease Models, Animal
;
Kupffer Cells/physiology*
;
Liver Failure, Acute/pathology*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Nuclear Receptor Subfamily 4, Group A, Member 1/physiology*
;
Receptors, Glucocorticoid/physiology*
9.Integrated analysis of hypoxia-induced miR-210 signature as a potential prognostic biomarker of hepatocellular carcinoma: a study based on The Cancer Genome Atlas.
Yi DAI ; Ji-Liang SHEN ; Xue-Yong ZHENG ; Tian-Yu LIN ; Hai-Tao YU
Journal of Zhejiang University. Science. B 2019;20(11):928-932
Hepatocellular carcinoma (HCC) is one of the most common types of liver cancer and is the second leading cause of cancer mortality with an estimated 745 500 deaths annually (Jemal et al., 2011). Although new therapeutic modalities including novel chemotherapeutic interventions and targeted therapy have been applied, the prognosis of HCC patients remains unsatisfactory due to the high incidence of intrahepatic and distal metastases (Siegel et al., 2018).
Apoptosis Regulatory Proteins/physiology*
;
Biomarkers
;
Carcinoma, Hepatocellular/pathology*
;
Female
;
Genome
;
Humans
;
Hypoxia
;
Liver Neoplasms/pathology*
;
Male
;
MicroRNAs/analysis*
;
Neoplasm Staging
;
Prognosis
;
Repressor Proteins/physiology*
10.Effect of Upregulated DNA Replication and Sister Chromatid Cohesion 1 Expression on Proliferation and Prognosis in Hepatocellular Carcinoma.
Xing-Wang XIE ; Xue-Yan WANG ; Wei-Jia LIAO ; Ran FEI ; Xu CONG ; Qian CHEN ; Lai WEI ; Hong-Song CHEN ; Yu WANG
Chinese Medical Journal 2018;131(23):2827-2835
Background:
DNA replication and sister chromatid cohesion 1 (DSCC1) (also called DCC1) is a component of an alternative replication factor C complex that loads proliferating cell nuclear antigen onto DNA during S phase of the cell cycle. It is located at 8q24 and frequently amplified in hepatocellular carcinoma (HCC). However, the role of DSCC1 in the carcinogenesis and progress of HCC has not been fully investigated. Here, we aimed to assert the importance of DSCC1 in the HCC.
Methods:
In this study, copy number variation data and RNA sequencing data were used to calculate the DNA copy number and mRNA expression of DSCC1 in HCC. Quantitative polymerase chain reaction, Western blotting, and immunohistochemistry analysis were used to determine the mRNA and protein level of DSCC1 in HCC. The Kaplan-Meier analysis and univariate and multivariate Cox regression analysis were used to assess the association of DSCC1 with the overall survival (OS) of HCC patients. Moreover, lentiviral shRNA was used to knockdown DSCC1, and then, colony-forming assay, cell cycle assay, and cell proliferation assay were performed to evaluate the impact of DSCC1 silencing on HCC cell lines.
Results:
We found that DSCC1 was amplified and highly expressed in HCC tumor tissues than in nontumor tissues. We then found that the overexpression of both mRNA and protein of DSCC1 was linked to the bad prognosis of HCC patients. Astonishingly, the protein level of DSCC1 was an independent prognostic factor for OS (hazard ratio, 1.79; 95% confidence interval, 1.17-2.74; P = 0.007). Furthermore, the clonogenic capacity of DSCC1-amplified HCC cell lines (MHCC-97H, MHCC-97L, and Hep3B) was significantly inhibited by transduction of a lentiviral shRNA that targets DSCC1. We also showed that knockdown of DSCC1 induced G0-G1 cell cycle arrest (increased from 60% to more than 80%) and greatly inhibited the proliferation of HCC cell lines.
Conclusion
These results suggest that DSCC1 is a putative HCC driver gene that promotes proliferation and is associated with poor prognosis in HCC.
Blotting, Western
;
Carcinoma, Hepatocellular
;
genetics
;
pathology
;
Cell Cycle
;
genetics
;
physiology
;
Cell Cycle Checkpoints
;
genetics
;
physiology
;
Cell Line, Tumor
;
Cell Proliferation
;
genetics
;
physiology
;
DNA Replication
;
genetics
;
physiology
;
Female
;
Hep G2 Cells
;
Humans
;
Immunohistochemistry
;
Liver Neoplasms
;
genetics
;
pathology
;
Male
;
Middle Aged
;
Multivariate Analysis
;
Proportional Hazards Models
;
Real-Time Polymerase Chain Reaction

Result Analysis
Print
Save
E-mail