1.MASLD development: From molecular pathogenesis toward therapeutic strategies.
Zhu YANG ; Jiahui ZHAO ; Kexin XIE ; Chengwei TANG ; Can GAN ; Jinhang GAO
Chinese Medical Journal 2025;138(15):1807-1824
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver injuries, including steatosis to steatohepatitis (MASH), liver fibrosis, cirrhosis, and relevant complications. The liver mainly comprises hepatocytes, liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), immune cells (T cells, B cells), and hepatic stellate cells (HSCs). Crosstalk among these different liver cells, endogenous aberrant glycolipid metabolism, and altered gut dysbiosis are involved in the pathophysiology of MASLD. This review systematically examines advances in understanding the molecular pathogenesis of MASLD, with a focus on emerging therapeutic targets and translational clinical trials. We first delineate the crucial regulatory mechanisms involving diverse liver cells and the gut-liver axis in MASLD development. These cell-specific pathogenic insights offer valuable perspectives for advancing precision medicine approaches in MASLD treatment. Furthermore, we evaluate potential therapeutic targets and summarize clinical trials currently underway. By comprehensively updating the MASLD pathophysiology and identifying promising strategies, this review aims to facilitate the development of novel pharmacotherapies for this increasingly prevalent condition.
Humans
;
Fatty Liver/therapy*
;
Animals
;
Liver/pathology*
;
Kupffer Cells/metabolism*
;
Hepatocytes/metabolism*
;
Hepatic Stellate Cells/metabolism*
2.Pseudolaric Acid B Alleviates Non-alcoholic Fatty Liver Disease by Targeting PPARα to Regulate Lipid Metabolism and Promote Mitochondrial Biogenesis.
Shu-Yan LIU ; Xiao-Wei ZHANG ; Gai GAO ; Chang-Xin LIU ; Hui CHEN ; Zhong-Xue FU ; Jiang-Yan XU ; Zhen-Zhen WANG ; Zhen-Qiang ZHANG ; Zhi-Shen XIE
Chinese journal of integrative medicine 2025;31(10):877-888
OBJECTIVE:
To investigate the therapeutic potential of pseudolaric acid B (PAB) on non-alcoholic fatty liver disease (NAFLD) and its underlying molecular mechanism in vitro and in vivo.
METHODS:
Eight-week-old male C57BL/6J mice (n=32) were fed either a normal chow diet (NCD) or a high-fat diet (HFD) for 8 weeks. The HFD mice were divided into 3 groups according to a simple random method, including HFD, PAB low-dose [10 mg/(kg·d), PAB-L], and PAB high-dose [20 mg/(kg·d), PAB-H] groups. After 8 weeks of treatment, glucose metabolism and insulin resistance were assessed by oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). Biochemical assays were used to measure the serum and cellular levels of total cholesterol (TC), triglycerides (TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). White adipose tissue (WAT), brown adipose tissue (BAT) and liver tissue were subjected to hematoxylin and eosin (H&E) staining or Oil Red O staining to observe the alterations in adipose tissue and liver injury. PharmMapper and DisGeNet were used to predict the NAFLD-related PAB targets. Peroxisome proliferator-activated receptor alpha (PPARα) pathway involvement was suggested by Kyoto Encyclopedia of Genes and Genomes (KEGG) and search tool Retrieval of Interacting Genes (STRING) analyses. Luciferase reporter assay, cellular thermal shift assay (CETSA), and drug affinity responsive target stability assay (DARTS) were conducted to confirm direct binding of PAB with PPARα. Molecular dynamics simulations were applied to further validate target engagement. RT-qPCR and Western blot were performed to assess the downstream genes and proteins expression, and validated by PPARα inhibitor MK886.
RESULTS:
PAB significantly reduced serum TC, TG, LDL-C, AST, and ALT levels, and increased HDL-C level in HFD mice (P<0.01). Target prediction analysis indicated a significant correlation between PAB and PPARα pathway. PAB direct target binding with PPARα was confirmed through luciferase reporter assay, CETSA, and DARTS (P<0.05 or P<0.01). The target engagement between PAB and PPARα protein was further confirmed by molecular dynamics simulations and the top 3 amino acid residues, LEU321, MET355, and PHE273 showed the most significant changes in mutational energy. Subsequently, PAB upregulated the genes expressions involved in lipid metabolism and mitochondrial biogenesis downstream of PPARα (P<0.05 or P<0.01). Significantly, the PPARα inhibitor MK886 effectively reversed the lipid-lowering and PPARα activation properties of PAB (P<0.05 or P<0.01).
CONCLUSION
PAB mitigates lipid accumulation, ameliorates liver damage, and improves mitochondrial biogenesis by binding with PPARα, thus presenting a potential candidate for pharmaceutical development in the treatment of NAFLD.
Animals
;
PPAR alpha/metabolism*
;
Non-alcoholic Fatty Liver Disease/pathology*
;
Male
;
Mice, Inbred C57BL
;
Lipid Metabolism/drug effects*
;
Diterpenes/therapeutic use*
;
Organelle Biogenesis
;
Diet, High-Fat
;
Humans
;
Mice
;
Liver/metabolism*
;
Insulin Resistance
;
Mitochondria/metabolism*
;
Molecular Docking Simulation
3.Effects of liver fibrosis induced by iron overload on M2 polarization of macrophages in mice.
Jiawen YU ; Yi ZHOU ; Chunmei QIAN ; Lan MU ; Renye QUE
Journal of Southern Medical University 2025;45(4):684-691
OBJECTIVES:
To observe the evolution of intrahepatic macrophage polarization in mice with liver fibrosis induced by iron overload.
METHODS:
Thirty-two C57BL/6 mice (6-8 weeks) were randomized into control group (n=8) and liver fibrosis model group (n=24) induced by aidly intraperitoneal injection of iron dextran. At the 3rd, 5th, and 7th weeks of modeling, 8 mice in the model group were sacrificed for observing liver fibrosis using Masson, Sirius Red and immunohistochemical staining and detecting serum levels of ALT, AST and the levels of serum iron, ferritin, liver total Fe and ferrous Fe. iNOS+/F4/80+ cells and CD206+/F4/80+ cells were detected by double immunofluorescence assay to observe the proportion and distribution of M1 and M2 macrophages. The hepatic expressions of Arg-1, iNOS, IL-6, IL-10, and TNF‑α proteins were detected using Western blotting or ELISA, and the expression of CD206 mRNA was detected using RT-PCR.
RESULTS:
The mice in the model group showed gradual increase of fibrous tissue hyperplasia in the portal area over time, structural destruction of the hepatic lobules and formation of pseudolobules. With the passage of time during modeling, the rat models showed significantly increased hepatic expressions of α-SMA and COL-1, elevated serum levels of ALT, AST, Fe, ferritin, and increased liver total Fe and ferrous Fe levels. The expressions of M1 polarization markers IL-6, TNF‑α, and iNOS all increased with time and reached their peak levels at the 3rd week; The expressions of M2 polarization markers (IL-10 and Arg-1 proteins and CD206 mRNA) significantly increased in the 3rd week and but decreased in the 5th and 7th weeks.
CONCLUSIONS
Iron overload promotes M1 polarization of macrophages in mice. Liver fibrosis in the early stage promotes M2 polarization of macrophages but negatively regulate M2 polarization at later stages.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Iron Overload/pathology*
;
Macrophages/metabolism*
;
Male
;
Liver Cirrhosis/etiology*
;
Nitric Oxide Synthase Type II/metabolism*
;
Interleukin-10/metabolism*
;
Liver/pathology*
;
Interleukin-6/metabolism*
;
Mannose Receptor
;
Tumor Necrosis Factor-alpha/metabolism*
;
Mannose-Binding Lectins/metabolism*
;
Arginase
4.NLRP3 signaling pathway promotes hepatocyte pyroptosis in mice with nonalcoholic steatohepatitis in hypoxic environment.
Shanyu LUO ; Qiang ZHU ; Yufei YAN ; Zonghong JI ; Huajie ZOU ; Ruixia ZHANG ; Yinggui BA
Journal of Southern Medical University 2025;45(9):2026-2033
OBJECTIVES:
To investigate the regulatory role of the NLRP3 signaling pathway in hepatocyte pyroptosis in nonalcoholic steatohepatitis (NASH) under hypoxia.
METHODS:
Twenty-four male C57BL/6 mice were randomized equally into hypoxic control (A), hypoxic NASH model (B), hypoxic NASH+NLRP3 inhibitor (C), and hypoxic NASH+caspase-1 inhibitor (D) groups. In groups B-D, the mice were fed a methionine choline-deficient (MCD) diet under hypoxic conditions (to simulate a 5000 m altitude) for 6 weeks; the mice in groups C and D received intraperitoneal injections of the respective inhibitors every other day.
RESULTS:
Compared with those in group A, the mice in group B showed significantly elevated serum levels of FBG, TC, TG, ALT and AST, increased liver lipid content, inflammatory cell infiltration and collagen fiber deposition, and enhanced hepatic expressions of NLRP3, caspase-1, IL-1β and GSDMD proteins, with obvious swelling, cristae breakage, vacuolization, and outer membrane disruption of the mitochondria, ribosome loss in the cytoplasm, destruction of the nuclear membrane, and pathological changes of the rough endoplasmic reticulum. Treatment with NLRP3 inhibitor and caspase-1 inhibitor both significantly lowered serum levels of TC, TG, ALT and AST (but without significantly affecting FBG) in the mouse models, and reduced liver lipid content, inflammatory cell infiltration, collagen deposition, and expression levels of NLRP3, caspase-1, GSDMD and IL-1β. The treatments also significantly improved pathological changes in the mitochondria, ribosomes and endoplasmic reticulum in liver tissues of the mice.
CONCLUSIONS
NLRP3 signaling pathway plays a key role in promoting hepatocyte pyroptosis in NASH mice under hypoxic condition, and inhibiting this pathway can effectively reduce liver inflammation, suggesting its potential as a therapeutic target for NASH treatment.
Animals
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pyroptosis
;
Mice, Inbred C57BL
;
Male
;
Hepatocytes/pathology*
;
Signal Transduction
;
Mice
;
Hypoxia/metabolism*
;
Caspase 1/metabolism*
;
Interleukin-1beta/metabolism*
;
Liver/metabolism*
5.Secreted proteins in treating metabolic dysfunction-associated steatotic liver disease: from bench towards bedside.
Yeping HUANG ; Bin LIU ; Cheng HU ; Yan LU
Protein & Cell 2025;16(8):641-666
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become a global epidemic, yet effective pharmacological treatments remain limited. Secreted proteins play diverse roles in regulating glucose and lipid metabolism, and their dysregulation is implicated in the development of various metabolic diseases, including MASLD. Therefore, targeting secreted proteins and modulating associated signaling pathways represents a promising therapeutic strategy for MASLD. In this review, we summarize recent findings on the roles of emerging families of secreted proteins in MASLD and related metabolic disorders. These include the orosomucoid (ORM) family, secreted acidic cysteine rich glycoprotein (SPARC) family, neuregulin (Nrg) family, growth differentiation factor (GDF) family, interleukin (IL) family, fibroblast growth factor (FGF) family, bone morphogenic protein (BMP) family, as well as isthmin-1 (Ism1) and mesencephalic astrocyte-derived neurotrophic factor (MANF). The review highlights their impact on glucose and lipid metabolism and discusses the clinical potential of targeting these secreted proteins as a therapeutic approach for MASLD.
Humans
;
Fatty Liver/pathology*
;
Animals
;
Lipid Metabolism
;
Glucose/metabolism*
6.Aging and metabolic dysfunction-associated steatotic liver disease: a bidirectional relationship.
Frontiers of Medicine 2025;19(3):427-438
In recent years, aging and cellular senescence have triggered an increased interest in corresponding research fields. Evidence shows that the complex aging process is involved in the development of many chronic liver diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). In fact, aging has a tremendous effect on the liver, leading to a gradual decline in the metabolism, detoxification and immune functions of the liver, which in turn increases the risk of liver disease. These changes can be based on the aging of liver cells (hepatocytes, liver sinusoidal endothelial cells, hepatic stellate cells, and Kupffer cells). Similarly, patients with liver diseases exhibit increases in the aging phenotype and aging cells, often manifesting as faster physical functional decline, which is closely related to the promoting effect of liver disease on aging. This review summarizes the interplay between MASLD/MASH development and aging, aiming to reveal the complex relationships that exacerbate one another. Moreover, the corresponding schemes for delaying aging or treating diseases are discussed to provide a basis for the development of effective prevention and treatment strategies in the future.
Humans
;
Aging/physiology*
;
Fatty Liver/metabolism*
;
Liver/pathology*
;
Cellular Senescence
;
Animals
7.Mechanism of auraptene in improving acute liver injury induced by diquat poisoning in mice.
Renyang OU ; Shan HUANG ; Lihong MA ; Zhijie ZHAO ; Shengshan LIU ; Yuanliang WANG ; Yezi SUN ; Nana XU ; Lijun ZHOU ; Mei LI ; Manhong ZHOU ; Guosheng RAO
Chinese Critical Care Medicine 2025;37(6):590-594
OBJECTIVE:
To investigate whether auraptene (AUR) exerts a protective effect on acute diquat (DQ)-induced liver injury in mice and explore its underlying mechanisms.
METHODS:
Forty SPF-grade healthy male C57BL/6 mice were randomly divided into normal control group (Control group), DQ poisoning model group (DQ group), AUR treatment group (DQ+AUR group), and AUR control group (AUR group), with 10 mice in each group. The DQ poisoning model was established via a single intraperitoneal injection of 40 mg/kg DQ aqueous solution (0.5 mL); Control group and AUR group received an equal volume of pure water intraperitoneally. Four hours post-modeling, DQ+AUR group and AUR group were administered 0.5 mg/kg AUR aqueous solution (0.2 mL) by gavage once daily for 7 consecutive days, while Control group and DQ group received pure water. Blood and liver tissues were collected after anesthesia on day 7. Liver ultrastructure was observed by transmission electron microscopy. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured via enzyme-linked immunosorbent assay (ELISA). Hepatic glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) levels were detected using WST-1, thiobarbituric acid (TBA), and enzymatic reaction methods, respectively. Protein expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Kelch-like ECH-associated protein 1 (Keap1), and activated caspase-9 in liver tissues was analyzed by Western blotting.
RESULTS:
Transmission electron microscopy revealed that mitochondria in the Control group exhibited mild swelling, uneven distribution of matrix, and a small number of cristae fractures. In the AUR group, mitochondria showed mild swelling, with no obvious disruption of cristae structure. In the DQ group, mitochondria demonstrated marked swelling and increased volume, matrix dissolution, loss and fragmentation of cristae, and extensive vacuolization. In contrast, the DQ+AUR group showed significantly reduced mitochondrial swelling, volume increase, matrix dissolution, cristae loss and fragmentation, and vacuolization compared to the DQ group. Compared with the DQ group, the DQ+AUR group exhibited significantly lower serum AST levels (U/L: 173.45±23.60 vs. 255.33±41.51), ALT levels (U/L: 51.77±21.63 vs. 100.70±32.35), and hepatic MDA levels (μmol/g: 12.40±2.76 vs. 19.74±4.10), along with higher hepatic GSH levels (mmol/g: 37.65±14.95 vs. 20.58±8.52) and SOD levels (kU/g: 124.10±33.77 vs. 82.81±22.00), the differences were statistically significant (all P < 0.05). Western blotting showed upregulated Nrf2 expression (Nrf2/β-actin: 0.87±0.37 vs. 0.53±0.22) and HO-1 expression (HO-1/β-actin: 1.06±0.22 vs. 0.49±0.08), and downregulated Keap1 expression (Keap1/β-actin: 0.82±0.12 vs. 1.52±0.76) and activated caspase-9 expression (activated caspase-9/β-actin: 1.16±0.28 vs. 1.71±0.30) in the DQ+AUR group compared to the DQ group (all P < 0.05).
CONCLUSION
AUR attenuates DQ-induced acute liver injury in mice by activating the Keap1/Nrf2 signaling pathway.
Animals
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Liver/pathology*
;
Chemical and Drug Induced Liver Injury/drug therapy*
;
Diquat/poisoning*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress
;
Apoptosis
;
Coumarins
8.Si-Wu-Tang attenuates liver fibrosis via regulating lncRNA H19-dependent pathways involving cytoskeleton remodeling and ECM deposition.
Jiaorong QU ; Xiaoyong XUE ; Zhixing WANG ; Zhi MA ; Kexin JIA ; Fanghong LI ; Yinhao ZHANG ; Ruiyu WU ; Fei ZHOU ; Piwen ZHAO ; Xiaojiaoyang LI
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):31-46
Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.
Humans
;
RNA, Long Noncoding/genetics*
;
Liver Cirrhosis/genetics*
;
Liver/metabolism*
;
Hepatic Stellate Cells/pathology*
;
MicroRNAs/metabolism*
;
Extracellular Matrix/metabolism*
;
Drugs, Chinese Herbal
9.Study on the protective effects of resveratrol on the liver of hindlimb-unloaded rats.
Yingying XUAN ; Yutian YANG ; Hanqin TANG ; Zhihui MA ; Liang LI ; Dongshuai SHEN ; Mei ZHANG ; Keming CHEN
Journal of Biomedical Engineering 2024;41(6):1250-1256
This study aims to investigate the protective effect of resveratrol against liver injury in hindlimb unloading rats. Thirty 2-month-old male SD rats were randomly divided into normal group (Control), hindlimb unloading model group (Model), and hindlimb unloading+resveratrol administration group (Model+Res). The Model + Res group was injected intraperitoneally with 30 mg/kg of resveratrol, and the Control and Model groups were injected intraperitoneally with an equal volume of 0.9% NaCl. Liver tissues were collected after 28 days and analyzed for oxidative stress, inflammatory factors, energy metabolism indices, Na +-K +-ATPase and Ca 2+-Mg 2+-ATPase activity, and morphological changes were observed by hematoxylin-eosin staining. The protein expression levels of Bax, Bcl-2, p-PI3K, PI3K, p-AKT, and AKT were detected by Western blotting. Compared with the Control group, hepatocytes in the Model group showed swelling, abnormal morphology, nuclear consolidation, and cell membrane disruption. Oxidative stress, inflammatory factor levels, hepatic glycogen accumulation, and energy metabolism were increased in the liver tissues of the Model group, while resveratrol treatment significantly reversed these changes. The results of Western blotting showed that resveratrol significantly reduced the expression of Bax and increased the expression levels of Bcl-2, and the proteins of p-PI3K/PI3K and p-AKT/AKT expression levels. It is suggested that 28 days of hindlimb unloading treatment could lead to liver tissue injury in rats, which is manifested as oxidative stress, inflammatory response, energy metabolism disorder and increased apoptosis level, and resveratrol has a certain mitigating effect on this.
Animals
;
Resveratrol
;
Male
;
Liver/pathology*
;
Rats, Sprague-Dawley
;
Rats
;
Hindlimb Suspension
;
Oxidative Stress/drug effects*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Stilbenes/pharmacology*
;
bcl-2-Associated X Protein/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis/drug effects*
10.A Novel Signature Combing Cuproptosis- and Ferroptosis-Related Genes in Nonalcoholic Fatty Liver Disease.
Rou-Rou FANG ; Qi-Fan YANG ; Jing ZHAO ; Shou-Zhu XU
Chinese Medical Sciences Journal 2024;39(4):261-272
OBJECTIVES:
To identify cuproptosis- and ferroptosis-related genes involved in nonalcoholic fatty liver disease and to determine the diagnostic value of hub genes.
METHODS:
The gene expression dataset GSE89632 was retrieved from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) between the non-alcoholic steatohepatitis (NASH) group and the healthy group using the 'limma' package in R software and weighted gene co-expression network analysis. Gene ontology, kyoto encyclopedia of genes and genomes pathway, and single-sample gene set enrichment analyses were performed to identify functional enrichment of DEGs. Ferroptosis- and cuproptosis-related genes were obtained from the FerrDb V2 database and available literatures, respectively. A combined signature for cuproptosis- and ferroptosis-related genes, called CRF, was constructed using the STRING database. Hub genes were identified by overlapping DEGs, WGCNA-derived key genes, and combined signature CRF genes, and validated using the GSE109836 and GSE227714 datasets and real-time quantitative polymerase chain reaction. A nomogram of NASH diagnostic model was established utilizing the 'rms' package in R software based on the hub genes, and the diagnostic value of hub genes was assessed using receiver operating characteristic curve analysis. In addition, immune cell infiltration in NASH versus healthy controls was examined using the CIBERSORT algorithm. The relationships among various infiltrated immune cells were explored with Spearman's correlation analysis.
RESULTS:
Analysis of GSE89632 identified 236 DEGs between the NASH group and the healthy group. WGCNA highlighted 8 significant modules and 11,095 pivotal genes, of which 330 genes constituted CRF. Intersection analysis identified IL6, IL1B, JUN, NR4A1, and PTGS2 as hub genes. The hub genes were all downregulated in the NASH group, and this result was further verified by the NASH validation dataset and real-time quantitative polymerase chain reaction. Receiver operating characteristic curve analysis confirmed the diagnostic efficacy of these hub genes with areas under the curve of 0.985, 0.941, 1.000, 0.967, and 0.985, respectively. Immune infiltration assessment revealed that gamma delta T cells, M1 macrophages, M2 macrophages, and resting mast cells were predominantly implicated.
CONCLUSIONS
Our investigation underscores the significant association of cuproptosis- and ferroptosis-related genes, specifically IL6, IL1B, JUN, NR4A1, and PTGS2, with NASH. These findings offer novel insights into the pathogenesis of NASH, potentially guiding future diagnostic and therapeutic strategies.
Non-alcoholic Fatty Liver Disease/pathology*
;
Humans
;
Ferroptosis/genetics*
;
Copper/metabolism*
;
Gene Ontology
;
Gene Expression Profiling

Result Analysis
Print
Save
E-mail