1.Immune checkpoint inhibitor-related T-cell-mediated rejection increases the risk of perioperative graft loss after liver transplantation.
Li PANG ; Yutian LIN ; Tao DING ; Yanfang YE ; Kenglong HUANG ; Fapeng ZHANG ; Xinjun LU ; Guangxiang GU ; Haoming LIN ; Leibo XU ; Kun HE ; Kwan MAN ; Chao LIU ; Wenrui WU
Chinese Medical Journal 2025;138(15):1843-1852
BACKGROUND:
Pre-transplant exposure to immune checkpoint inhibitors (ICIs) significantly increases the risk of allograft rejection after liver transplantation (LT); however, whether ICI-related rejection leads to increased graft loss remains controversial. Therefore, this study aimed to investigate the association between ICI-related allograft rejection and perioperative graft loss.
METHODS:
This was a retrospective analysis of adult liver transplant recipients with early biopsy-proven T-cell-mediated rejection (TCMR) at Liver Transplantation Center of Sun Yat-sen Memorial Hospital from June 2019 to September 2024. The pathological features, clinical characteristics, and perioperative graft survival were analyzed.
RESULTS:
Twenty-eight patients who underwent early TCMR between June 2019 and September 2024 were included. Based on pre-LT ICI exposure, recipients were categorized into ICI-related TCMR (irTCMR, n = 12) and conventional TCMR (cTCMR, n = 16) groups. Recipients with irTCMR had a higher median Banff rejection activity index (RAI) (6 vs . 5, P = 0.012) and more aggressive tissue damage and inflammation. Recipients with irTCMR showed higher proportion of treatment resistance, achieving a complete resolution rate of only 8/12 compared to 16/16 for cTCMR. Graft loss occurred in 5/12 of irTCMR recipients within 90 days after LT, with no graft loss in cTCMRs recipients. Cox analysis demonstrated that irTCMR with an ICI washout period of <30 days was an independent risk factor for perioperative graft loss (hazard ratio [HR], 6.540; 95% confidence interval [CI], 1.067-40.067, P = 0.042).
CONCLUSION
IrTCMR is associated with severe pathological features, increased resistance to treatment, and higher graft loss in adult liver transplant recipients.
Humans
;
Liver Transplantation/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Retrospective Studies
;
Graft Rejection/immunology*
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Adult
;
T-Lymphocytes/drug effects*
;
Graft Survival/immunology*
;
Aged
2.Exosomal Pparα derived from cancer cells induces CD8 + T cell exhaustion in hepatocellular carcinoma through the miR-27b-3p /TOX axis.
Wenjun ZHONG ; Nianan LUO ; Yafeng CHEN ; Jiangbin LI ; Zhujun YANG ; Rui DONG
Chinese Medical Journal 2025;138(23):3139-3152
BACKGROUND:
Cluster of differentiation 8 positive (CD8 + ) T cells play a crucial role in the response against tumors, including hepatocellular carcinoma (HCC), where their dysfunction is commonly observed. While the association between elevated peroxisome proliferator-activated receptor alpha (PPARα) expression in HCC cells and exosomes and unfavorable prognosis in HCC patients is well-established, the underlying biological mechanisms by which PPARα induces CD8 + T cell exhaustion mediated by HCC exosomes remain poorly understood.
METHODS:
Bioinformatics analyses and dual-luciferase reporter assays were used to investigate the regulation of microRNA-27b-3p ( miR-27b-3p ) and thymocyte selection-associated high mobility group box ( Tox ) by Pparα . In vitro and in vivo experiments were conducted to validate the effects of HCC-derived exosomes, miR-27b-3p overexpression, and Pparα on T cell function. Exosome characterization was confirmed using transmission electron microscopy, Western blotting, and particle size analysis. Exosome tracing was performed using small animal in vivo imaging and confocal microscopy. The expression levels of miR-27b-3p , Pparα , and T cell exhaustion-related molecules ( Tox , Havcr2 , and Pdcd1 ) were detected using quantitative reverse transcription polymerase chain reaction analysis, Western blotting analysis, immunofluorescence staining, and flow cytometry analysis.
RESULTS:
Pparα expression was significantly increased in HCC and negatively correlated with prognosis. It showed a positive correlation with Tox and a negative correlation with miR-27b-3p . The overexpressed Pparα from HCC cells was delivered to CD8 + T cells via exosomes, which absorbed miR-27b-3p both in vitro and in vivo , acting as "miRNA sponges". Further experiments demonstrated that Pparα can inhibit the negative regulation of Tox mediated by miR-27b-3p through binding to its 3'untranslated regions.
CONCLUSIONS
HCC-derived exosomes deliver Pparα to T cells and promote CD8 + T cell exhaustion and malignant progression of HCC via the miR-27b-3p /TOX regulatory axis. The mechanisms underlying T-cell exhaustion in HCC can be utilized for the advancement of anticancer therapies.
MicroRNAs/metabolism*
;
PPAR alpha/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
Humans
;
Liver Neoplasms/genetics*
;
CD8-Positive T-Lymphocytes/immunology*
;
Exosomes/metabolism*
;
Animals
;
Cell Line, Tumor
;
Mice
;
High Mobility Group Proteins/genetics*
;
Male
;
T-Cell Exhaustion
3.Research progress on T cell exhaustion in immunotherapy for patients with hepatocellular carcinoma.
Yang WU ; Tian LI ; Runbing ZHANG ; Yani ZHANG ; Lingling ZHU ; Tingting SHI ; Shunna WANG ; Meixia YANG ; Xiaohui YU ; Jiucong ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):271-277
Hepatocellular carcinoma (HCC) is one of the fastest growing cancers in the world, ranking fourth among the causes of cancer-induced death in the world. At present, the field of HCC treatment is developing rapidly, and immunotherapy has been recognized as a promising treatment method, in which T cells play a key role in HCC immunotherapy. However, in the case of virus infection or in tumor microenvironment (TME), T cells will be continuously stimulated by antigens and then fall into the state of T cell exhaustion (Tex). This state will not only reduce the immunity of patients but also lead to poor efficacy of immunotherapy. Therefore, to deeply analyze the mechanism of Tex and to explore effective strategies to reverse Tex is the key point in the immunotherapy for HCC. This review aims to summarize the mechanism of Tex in HCC patients, and the current situation and shortcomings of drug research and development to reverse Tex at this stage, in order to provide theoretical basis for the optimization of immunotherapy regimen for HCC patients.
Humans
;
Carcinoma, Hepatocellular/therapy*
;
Liver Neoplasms/therapy*
;
Immunotherapy/methods*
;
T-Lymphocytes/immunology*
;
Tumor Microenvironment/immunology*
;
Animals
;
T-Cell Exhaustion
4.The characteristics and clinical values of peripheral T lymphocytic subsets and functional changes in primary biliary cholangitis.
Liming ZHENG ; Jinhan LIU ; Hong LI ; Longgen LIU ; Guojun ZHENG ; Sijia DAI
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):437-443
Objective This study aimed to analyze the characteristics and clinical significance of peripheral lymphocytic subsets and cytokine levels, including interleukin 1β(IL-1β), IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12P70, IL-17A, tumor necrosis factor α(TNF-α), interferon γ(IFN-γ) and IFN-α, in patients with primary biliary cholangitis (PBC), to provide some novel insights into the pathogenesis of PBC. Methods We retrospectively collected clinical features and laboratory data from hospitalized patients who were primarily diagnosed with PBC and from healthy physical examinees at the Third People's Hospital of Changzhou between January 1, 2023, and June 30, 2024. Results A total of 152 PBC patients and 96 healthy controls who met the inclusion and exclusion criteria were enrolled. Significant differences were observed in baseline characteristics and laboratory data between the two groups. After the propensity score matching (PSM) analysis, 61 PBC patients and 61 healthy controls were successfully matched, ensuring that the general characteristics (age and gender) of the two groups were balanced and comparable. Compared to the control group, the proportion of peripheral lymphocytes was significantly higher in the PBC group (31.9% vs. 17.8%), primarily due to an increase in CD4+ T cells (46.77% vs. 41.19%), while CD8+T cells were significantly decreased (19.73% vs. 22.07%). Notably, the proportions of CD4+ programmed cell death 1 (PD-1)+ T and CD8+PD-1+ T cells were elevated, with CD8+PD-1+ T cells showing a significant positive correlation with the severity of liver inflammation (r=0.41). Furthermore, the mitochondrial mass (MM) of CD4+ T cells was significantly increased in PBC patients, whereas no significant changes were observed in the MM of CD8+ T cells or the mitochondrial membrane potential (MMP) of CD3+ T cells. Additionally, the plasma levels of cytokines, such as IL-4, IL-8, IL-10 and IFN-α, were abnormally elevated. The plasma levels of IL-5 and IL-1β were negatively correlated with the stage of liver fibrosis in patients with PBC (r=-0.52). Conclusion The overactivation and proliferation of CD4+ T cells, along with the suppression of CD8+ T cell function and increased PD-1 expression leads to T cell exhaustion, indicating significant immunological alterations in PBC patients. These changes are closely associated with the disease progression. Additionally, cytokines are likely involved in the immune regulation process of PBC and may influence the pathogenic mechanisms of the disease. Regular monitoring of lymphocyte subsets and cytokine levels can help assess the immune status and disease activity in patients with PBC, thereby guiding the individualized treatment strategies.
Humans
;
Male
;
Female
;
Middle Aged
;
Liver Cirrhosis, Biliary/blood*
;
Retrospective Studies
;
T-Lymphocyte Subsets/immunology*
;
Aged
;
Cytokines/blood*
;
Adult
;
CD8-Positive T-Lymphocytes/immunology*
5.Preparation and identification of a novel microparticle-loaded DC vaccine against hepatocellular carcinoma.
Zhao ZHAN ; Xuezheng LIU ; Doudou DONG ; Dingyu CHEN ; Yaling SUN
Chinese Journal of Cellular and Molecular Immunology 2025;41(10):913-920
Objective To characterize the properties of Hepa1-6-derived microparticles (Hepa1-6-MPs), investigate their stimulatory effects on dendritic cells (DCs) and their cellular uptake pathways, and explore the specific cytotoxic effects of CD8+ T cells induced by Hepa1-6-MP-loaded DCs on hepatoma cell lines, with the aim of developing a novel immunotherapeutic model for hepatocellular carcinoma (HCC). Methods The isolated Hepa1-6-MPs were identified using Western blotting, transmission electron microscopy (TEM) and dynamic light scattering (DLS). Flow cytometry was used to assess the uptake pathways of Hepa1-6-MPs by DCs. Subsequently, enzyme-linked immunosorbent assay (ELISA) was used to measure the effects of Hepa1-6-MP-loaded DCs on the release levels of tumor necrosis factor α(TNF-α) and interferon γ(IFN-γ) into the supernatant of CD8+ T cells. Lactate dehydrogenase (LDH) tests were conducted to evaluate the cytotoxic effects of CD8+ T cells stimulated by Hepa1-6-MP-loaded DCs on hepatoma cells. Results The morphology, size and protein markers of Hepa1-6-MPs met the established criteria. Hepa1-6-MPs enhanced the expression of DC maturation markers CD80 and CD86, and were internalized by DCs via clathrin-mediated endocytosis and phagocytosis pathways. Subsequently, Hepa1-6-MP-loaded DCs stimulated CD8+ T cells to release high levels of TNF-α and IFN-γ, which induced their specific cytotoxicity against HCC cells. Conclusion These findings suggest that Hepa1-6-MP-loaded DCs may be a promising HCC immunotherapeutic tool.
Carcinoma, Hepatocellular/therapy*
;
Liver Neoplasms/therapy*
;
Dendritic Cells/immunology*
;
Humans
;
Cancer Vaccines/immunology*
;
CD8-Positive T-Lymphocytes/immunology*
;
Cell Line, Tumor
;
Tumor Necrosis Factor-alpha/immunology*
;
Interferon-gamma/immunology*
;
Cell-Derived Microparticles/immunology*
;
Animals
6.Xiaohuang Qudan decoction alleviates ANIT-induced cholestatic liver injury by inhibiting the JAK2/STAT3 pathway and regulating TH17/Treg.
Zhangkui TAN ; Lifeng CHEN ; Zhiqin YE ; Qiping LU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):457-470
Xiaohuang Qudan decoction (XHQDD) is a classical traditional Chinese medicine (TCM) formula widely used in the treatment of cholestatic liver injury. Despite its widespread use, the protective mechanism of XHQDD against cholestatic liver injury remains incompletely understood. The aim of this study was to investigate whether XHQDD mediates its beneficial effects by inhibiting the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway and regulating TH17/Treg balance. To this end, the researchers used Sprague-Dawley (SD) rats and established a cholestatic liver injury model by oral administration of alpha-naphthylisothiocyanate (ANIT). The experimental group was divided into six groups: Control (CON), ANIT, ursodeoxycholic acid (UDCA), XHQDD-low dose (XHQDD-L) group, XHQDD-medium dose (XHQDD-M) group, and XHQDD-high dose (XHQDD-H) groups. Then, after 7 d of treatment, various tests were performed to verify the results. Firstly, XHQDD and its drug-containing serum were analyzed by ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS), and 14 blood-entry components were identified. Then, bile flow was monitored and found to be significantly reduced in the model group, which was significantly reversed in the UDCA and XHQDD groups. To further assess ANIT-induced liver injury, hematoxylin and eosin (H&E) and Sirius red staining, alongside transmission electron microscopy (TEM), were employed to observe liver tissues, revealing hepatocellular injury, cholestasis, and hepatic fibrotic changes. Serum inflammatory factors and liver injury indicators were assessed using enzyme-linked immunosorbent assay (ELISA), indicating an inflammatory state in ANIT-induced liver injury rats. The expression levels of JAK2/STAT3-related genes and proteins in liver and intestinal tissues were measured via quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, immunofluorescence (IF) staining, and Western blottting (WB) assays. These studies revealed that the inflammatory state of liver-injured rats was inextricably linked to the inflammatory cascade associated with the JAK2/STAT3 pathway and that XHQDD may exert anti-inflammatory efficacy by inhibiting the JAK2/STAT3 pathway. Flow cytometry was used to determine the percentage of T helper 17 (Th17)/regulatory T (Treg) cells in serum and hepatocytes, and it was further found that XHQDD was able to regulate Th17/Treg immune homeostasis in liver-injured rats. The findings suggest that XHQDD markedly alleviates inflammation in ANIT rats, potentially treating cholestasis and liver injury through JAK2/STAT3 inhibition and Th17/Treg balance regulation.
Animals
;
STAT3 Transcription Factor/immunology*
;
Janus Kinase 2/immunology*
;
Drugs, Chinese Herbal/pharmacology*
;
Rats, Sprague-Dawley
;
1-Naphthylisothiocyanate/adverse effects*
;
Male
;
Rats
;
Th17 Cells/immunology*
;
Cholestasis/immunology*
;
Signal Transduction/drug effects*
;
T-Lymphocytes, Regulatory/immunology*
;
Chemical and Drug Induced Liver Injury/immunology*
;
Liver/drug effects*
7.Natural products targeting NLRP3 inflammasome for metabolic dysfunction-associated fatty liver disease: the known unknowns.
Jiahui MENG ; Qiqi WANG ; Haopeng WANG ; Xuange SHEN ; Tingting QIN ; Wen ZHAO ; Haixia LI ; Ziqiao YUAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(9):1036-1046
Metabolic dysfunction-associated fatty liver disease (MAFLD), characterized by fatty acid overload, secondary chronic inflammation, and fibrosis, has become the most prevalent chronic liver disease globally. While no effective pharmacotherapy exists for MAFLD, mitigating inflammatory responses represents a promising approach to preventing the progression from steatosis to severe steatohepatitis. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, which detects endogenous danger and stress signals, has emerged as a significant target for inflammatory disease treatment, as transcriptional inactivation of its components demonstrates the therapeutic potential for MAFLD. Natural products targeting NLRP3 inflammasome activation have shown promising efficacy in MAFLD therapy. This review synthesizes the current understanding of NLRP3 inflammasome activation and therapeutic targets for NLRP3 homeostasis. Additionally, natural products reported to inhibit NLRP3 inflammasome for MAFLD improvement are categorized according to their mechanisms of action. The review also addresses limitations and future directions regarding natural products targeting NLRP3 inflammasome in MAFLD treatment. Enhanced understanding of NLRP3 inflammasome activation mechanisms in MAFLD and the identification of novel natural products supported by mechanistic research will significantly advance MAFLD treatment.
Humans
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
;
Inflammasomes/metabolism*
;
Biological Products/therapeutic use*
;
Animals
;
Fatty Liver/immunology*
8.Anti-inflammatory and hepatoprotective triterpenoids from the traditional Mongolian medicine Gentianopsis barbata.
Huizhen CHENG ; Huan LIU ; Xiaoyu QI ; Yuzhou FAN ; Zhongzhu YUAN ; Yuanliang XU ; Yanchun LIU ; Yan LIU ; Kai GUO ; Shenghong LI
Chinese Journal of Natural Medicines (English Ed.) 2025;23(9):1111-1121
Gentianopsis barbata (G. barbata) represents a significant plant species with considerable ornamental and medicinal value in China. This investigation sought to elucidate the primary constituents within the plant and investigate their pharmacological properties. Fifty triterpenoids (1-50), including nine previously undescribed compounds (1, 2, 7, 10, 20, 28, 29, 37, and 41) were isolated and characterized from the whole plants of G. barbata. Notably, compounds 1 and 2 exhibited the novel 3,4;9,10-diseco-24-homo-cycloartane triterpenoid skeleton. The isolated triterpenoids demonstrated substantial anti-inflammatory activity through inhibition of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) cytokine secretion in LPS-induced RAW264.7 macrophages, and hepatoprotective effects by preventing tert-butyl hydroperoxide (t-BHP)-induced oxidative injury in HepG2 cells. These results demonstrate both the presence of diverse triterpenoids in G. barbata and their therapeutic potential for inflammatory and hepatic conditions, providing scientific evidence supporting the clinical application of this traditional Mongolian medicinal plant.
Triterpenes/isolation & purification*
;
Mice
;
Anti-Inflammatory Agents/isolation & purification*
;
Animals
;
Humans
;
RAW 264.7 Cells
;
Hep G2 Cells
;
Interleukin-6/genetics*
;
Tumor Necrosis Factor-alpha/genetics*
;
Medicine, Mongolian Traditional
;
Macrophages/immunology*
;
Protective Agents/isolation & purification*
;
Liver/drug effects*
;
Gentianaceae/chemistry*
;
Plant Extracts/chemistry*
;
Molecular Structure
9.Bisdemethoxycurcumin suppresses liver fibrosis-associated hepatocellular carcinoma via inhibiting CXCL12-induced macrophage polarization.
Wei YUAN ; Xinxin ZENG ; Bin CHEN ; Sihan YIN ; Jing PENG ; Xiong WANG ; Xingxing YUAN ; Kewei SUN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1232-1247
Chronic, unresolved inflammation correlates with persistent hepatic injury and fibrosis, ultimately progressing to hepatocellular carcinoma (HCC). Bisdemethoxycurcumin (BDMC) demonstrates therapeutic potential against HCC, yet its mechanism in preventing hepatic "inflammation-carcinoma transformation" remains incompletely understood. In the current research, clinical HCC specimens underwent analysis using hematoxylin-eosin (H&E) staining and immunohistochemistry (IHC) to evaluate the expression of fibrosis markers, M2 macrophage markers, and CXCL12. In vitro, transforming growth factor-β1 (TGF-β1)-induced LX-2 cells and a co-culture system of LX-2, THP-1, and HCC cells were established. Cell functions underwent assessment through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and Transwell assays. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blotting and immunofluorescence evaluated the differential expression of molecules. The interaction between β-catenin/TCF4 and CXCL12 was examined using co-immunoprecipitation (Co-IP), dual luciferase, and chromatin immunoprecipitation (ChIP) assays. A DEN-induced rat model was developed to investigate BDMC's role in liver fibrosis-associated HCC (LFAHCC) development in vivo. Our results showed that clinical HCC tissues exhibited elevated fibrosis and enriched M2 macrophages. BDMC delayed liver fibrosis progression to HCC in vivo. BDMC inhibited the inflammatory microenvironment induced by activated hepatic stellate cells (HSCs). Furthermore, BDMC suppressed M2 macrophage-induced fibrosis and HCC cell proliferation and metastasis. Mechanistically, BDMC repressed TCF4/β-catenin complex formation, thereby reducing CXCL12 transcription in LX-2 cells. Moreover, CXCL12 overexpression reversed BDMC's inhibitory effect on macrophage M2 polarization and its mediation of fibrosis, as well as HCC proliferation and metastasis. BDMC significantly suppressed LFAHCC development through CXCL12 in rats. In conclusion, BDMC inhibited LFAHCC progression by reducing M2 macrophage polarization through suppressing β-catenin/TCF4-mediated CXCL12 transcription.
Animals
;
Liver Neoplasms/etiology*
;
Humans
;
Carcinoma, Hepatocellular/immunology*
;
Liver Cirrhosis/complications*
;
Macrophages/drug effects*
;
Male
;
Rats
;
Chemokine CXCL12/genetics*
;
Diarylheptanoids/pharmacology*
;
Rats, Sprague-Dawley
;
beta Catenin/genetics*
10.Zhuanggu Jianxi Decoction reduces synovial tissue inflammation in human knee osteoarthritis by regulating LXRs/NF-κB signaling pathway.
Yan XIAO ; Jun LIU ; Peng CHEN ; Mei-Ling WANG ; Zhuo-Ming ZHENG ; Ying-Jie ZHANG ; Ting ZHANG ; Sheng-Jian WENG ; You-Xin SU ; Jie-Mei GUO
China Journal of Chinese Materia Medica 2024;49(23):6481-6489
This study aims to explore the mechanism of Zhuanggu Jianxi Decoction in reducing synovial tissue inflammation in human knee osteoarthritis(KOA) via the liver X receptors(LXRs)/nuclear factor(NF)-κB signaling pathway. The synovial tissue samples were collected from 5 healthy volunteers and 30 KOA synovitis patients and cultured in vitro. The samples from the heathy volunteers were set as the normal group, and those from KOA synovitis patients were randomized into synovitis, Zhuanggu Jianxi Decoction, LXRα inhibitor, and N-CoR inhibitor groups. The synovitis tissue samples of the 5 groups were treated with 10% blank serum, 10% blank serum, 10% drug-containing serum, 10% drug-containing serum+LXRα inhibitor, and 10% drug-containing serum+N-CoR inhibitor, respectively, for 7 days. After intervention, the synovial tissue samples of each group were collected and stained with hematoxylin-eosin for observation and scoring of the pathological changes. The expression intensity of the fibroblast-specific marker α-smooth musle actin(α-SMA) in the synovial tissue was observed by immunofluorescence staining. The levels of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), matrix metalloproteinase-3(MMP-3), and matrix metalloproteinase-13(MMP-13) in the supernatant of synovium homogenate were determined by ELISA. The mRNA and protein levels of LXRα, N-CoR, P50, and P65 in the synovial tissue were determined by RT-qPCR and Western blot, respectively. The results showed that compared with the normal group, the synovitis group showcased obvious synovial lining cell proliferation, inflammatory cell infiltration, synovial cell disarrangement, increased histopathological score(P<0.05), enhanced α-SMA fluorescence intensity and increased number of synovial fibroblasts(P<0.05), elevated levels of IL-1β, TNF-α, MMP-3, and MMP-13 in the synovial tissue(P<0.05), down-regulated mRNA and protein levels of LXRα and N-CoR, and up-regulated mRNA and protein levels of P50 and P65(P<0.05). Compared with the synovitis group, the Zhuanggu Jianxi Decoction group showed alleviated pathological changes, declined histopathological score of the synovial tissue(P<0.05), decreased α-SMA fluorescence intensity and number of synovial fibroblasts(P<0.05), lowered levels of IL-1β, TNF-α, MMP-3, and MMP-13(P<0.05), up-regulated mRNA and protein levels of LXRα and N-CoR, and down-regulated mRNA and protein levels of P50 and P65(P<0.05) in the synovial tissue. Compared with the Zhuanggu Jianxi Decoction group, the LXRα inhibitor group and N-CoR inhibitor group showed aggravated pathological changes, risen histopathological score of the synovial tissue(P<0.05), enhanced α-SMA fluorescence intensity and increased number of synovial fibroblasts(P<0.05), elevated levels of IL-1β, TNF-α, MMP-3, and MMP-13(P<0.05), down-regulated mRNA and protein levels of LXRα and N-CoR, and up-regulated mRNA and protein levels of P50 and P65(P<0.05). The results above indicated that Zhuanggu Jianxi Decoction could alleviate the synovial tissue inflammation in KOA patients by upregulating the mRNA and protein levels of LXRα and N-CoR in the LXRs/NF-κB pathway to downregulate the mRNA and protein levels of P50 and P65 and reduce the activity of the NF-κB pathway in the synovial tissue.
Humans
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Signal Transduction/drug effects*
;
Male
;
Liver X Receptors/immunology*
;
Middle Aged
;
NF-kappa B/metabolism*
;
Female
;
Synovial Membrane/metabolism*
;
Aged
;
Adult

Result Analysis
Print
Save
E-mail