1.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
2.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
3.Research advances in autoimmune pancreatitis with pancreatic exocrine insufficiency
Xiang AO ; Chenxiao LIU ; Xianda ZHANG ; Taojing RAN ; Chunhua ZHOU ; Duowu ZOU
Journal of Clinical Hepatology 2025;41(2):395-400
Autoimmune pancreatitis is a special type of chronic pancreatitis that can lead to abnormal pancreatic exocrine function in patients. Autoimmune pancreatitis comorbid with pancreatic exocrine insufficiency has a complex pathogenesis, and there is limited research on this topic, leading to the lack of understanding of such patients in clinical practice. This article introduces the epidemiology of autoimmune pancreatitis, briefly describes the pathogenesis of pancreatic exocrine insufficiency caused by autoimmune pancreatitis, and summarizes the various detection methods for pancreatic exocrine function, nutritional assessments, lifestyle management, and drug therapy, in order to strengthen the understanding of autoimmune pancreatitis comorbid with pancreatic exocrine insufficiency and improve the clinical diagnosis and treatment of pancreatic exocrine insufficiency.
4.Traditional Chinese Medicine Regulates JAK/STAT Signaling Pathway to Treat Colorectal Cancer: A Review
Mingxing WANG ; Wanhui DONG ; Baorui ZHANG ; Tong LAI ; Aixin LIU ; Qingming SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):278-287
Colorectal cancer (CRC) ranks as the second leading cause of cancer death worldwide. Although preventive colonoscopy screening has improved the survival rate of CRC patients in the past few years, there are still many patients diagnosed after symptoms appear. The surgery for CRC carries high risks and high recurrence, and ideal therapies remain to be developed. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway has become a focus of research due to its central role in cellular activities. As a classic oncogenic pathway, the JAK/STAT signaling pathway offers new possibilities for diagnosing and treating various malignancies, and it paves a new way for developing therapies for CRC. This pathway not only participates in basic cellular processes, such as proliferation, differentiation, and apoptosis but also plays a crucial role in immune responses and inflammation. Abnormal activation of the JAK/STAT signaling pathway is closely related to the occurrence and development of CRC. Studies have shown that the active components and compound prescriptions of traditional Chinese medicine (TCM) can inhibit the proliferation, invasion, migration, and angiogenesis while promoting the apoptosis and autophagy of CRC cells by interfering with the JAK/STAT signaling pathway. Furthermore, this pathway may also play a role in regulating the sensitivity of tumor cells to chemotherapy and radiotherapy, thus influencing the effectiveness of tumor treatment and impeding the progression of CRC. In recent years, research results have been updated rapidly, and previous literature summaries have failed to incorporate the latest findings, creating obstacles to accessing current literature. Therefore, this article supplements and summarizes information from the definition of the JAK/STAT pathway, association of this pathway with CRC, and TCM intervention of CRC. This review aims to provide references for future development of molecular biology regarding CRC and the research and development of new drugs.
5.Combination Therapy of Pyrotinib and Metronomic Vinorelbine in HER2+ Advanced Breast Cancer after Trastuzumab Failure (PROVE): A Prospective Phase 2 Study
Chunfang HAO ; Xu WANG ; Yehui SHI ; Zhongsheng TONG ; Shufen LI ; Xiaodong LIU ; Lan ZHANG ; Jie ZHANG ; Wenjing MENG ; Li ZHANG
Cancer Research and Treatment 2025;57(2):434-442
Purpose:
Approximately 50%-74% of patients with metastatic human epidermal growth factor receptor 2 (HER2)–positive breast cancer do not respond to trastuzumab, with 75% of treated patients experiencing disease progression within a year. The combination of pyrotinib and capecitabine has showed efficacy in these patients. This study evaluates the efficacy and safety of pyrotinib combined with metronomic vinorelbine for trastuzumab-pretreated HER2-positive advanced breast cancer patients.
Materials and Methods:
In this phase 2 trial, patients aged 18-75 years with HER2-positive advanced breast cancer who had previously failed trastuzumab treatment were enrolled to receive pyrotinib 400 mg daily in combination with vinorelbine 40mg thrice weekly. The primary endpoint was progression-free survival (PFS), while secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety.
Results:
From October 21, 2019, to January 21, 2022, 36 patients were enrolled and received at least one dose of study treatment. At the cutoff date, 20 experienced disease progression or death. With a median follow-up duration of 35 months, the median PFS was 13.5 months (95% confidence interval [CI], 8.3 to 18.5). With all patients evaluated, an ORR of 38.9% (95% CI, 23.1 to 56.5) and a DCR of 83.3% (95% CI, 67.2 to 93.6) were achieved. The median OS was not reached. Grade 3 adverse events (AEs) were observed in 17 patients, with diarrhea being the most common (27.8%), followed by vomiting (8.3%) and stomachache (5.6%). There were no grade 4/5 AEs.
Conclusion
Pyrotinib combined with metronomic vinorelbine showed promising efficacy and an acceptable safety profile in HER2-positive advanced breast cancer patients after trastuzumab failure.
6.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
Objective:
This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals.
Methods:
A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test.
Results:
AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05).
Conclusion
These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population.
7.Study on the protective efect and mechanism of paeoniflorin on palmitic acid-induced HepG2 cells
Tong LIU ; Shanzheng LI ; Cheng ZHOU ; Sutong LIU ; Lihui ZHANG ; Wenxia ZHAO
Journal of Clinical Hepatology 2025;41(3):499-505
ObjectiveTo investigate the role and mechanism of action of paeoniflorin (PF) in protecting HepG2 cells induced by palmitic acid (PA). MethodsHepG2 cells were stimulated with PA at a concentration of 250 μmol/L to establish a NAFLD model. Compound C at a concentration of 10 μmol/L was used as an inhibitor, and PF at a concentration of 25 μmol/L was used for intervention. The experiment was divided into normal group (CON group) treated with complete culture medium, model group (MOD group) treated with PA, PF treatment group (MOD+PF group) treated with PA and PF, model+inhibitor group (MOD+COM group) treated with PA and Compound C, and model+inhibitor+PF group (MOD+COM+PF group) treated with PA, Compound C, and PF. Kits were used to measure lipid deposition indicators, liver function parameters, oxidative stress indicators, and inflammation indicators; oil red O staining was used to observe lipid deposition; Western Blot was used to measure the protein expression levels of AMPK, SIRT1, PGC-1α, mTOR, Beclin-1, LC3, and P62 in cells. The one-way analysis of variance was used for comparison of quantitative data between groups, while the Tukey’s test was used for comparison between two groups. ResultsCompared with the MOD group, PF improved the levels of TC and TG (P<0.05), reduced the levels of ALT, AST, CRP, TNF-α, IL-1β, and IL-6 (P<0.05), increased the activity of SOD and CAT and the level of GSH, and reduced the level of MDA in cells (all P<0.05). Oil red O staining showed that PF alleviated lipid deposition in cells. Western blot results showed that compared with the MOD group, PF increased the protein expression levels of p-AMPK, SIRT1, PGC-1α, LC3Ⅱ/LC3Ⅰ, and Beclin-1 and reduced the protein expression levels of p-mTOR and P62 (all P<0.05). ConclusionPF can inhibit PA-induced oxidative stress and inflammatory response in HepG2 cells, improve lipid deposition, and promote autophagy via the AMPK/SIRT1/PGC-1α/mTOR signaling pathway.
8.Effect of intracellular and extracellular vesicles derived from periodontal ligament stem cells on the osteogenic differentiation ability of periodontal ligament stem cells under an inflammatory microenvironment
LIU Haotian ; YAN Fuhua ; WU Yu ; TONG Xin ; ZHANG Qian
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(4):268-277
Objective:
To examine the effect of intracellular vesicles (IVs) and extracellular vesicles (EVs) that originated from periodontal ligament stem cells (PDLSCs) on the osteogenic differentiation of PDLSCs within a lipopolysaccharide (LPS)-simulated inflammatory microenvironment, and to provide new insights for the application of IVs in the repair and regeneration of periodontal tissue in periodontitis.
Methods:
Ethical approval was obtained from the institution. Human-origin PDLSCs were extracted, and the IVs and EVs from PDLSCs at the 3rd-6th passages were gathered and identified using transmission electron microscopy, nano flow cytometry (Nano FCM) analysis, and Western Blot. The 3rd-6th generations of PDLSCs were categorized into the following groups: Control group, LPS group, LPS + 100 μg/mL EVs group (LPS+EVs group), and LPS + 100 μg/mL IVs group (LPS+IVs group). The effects of the IVs and EVs on the anti-inflammatory and osteogenic differentiation of PDLSCs in an inflammatory microenvironment were assessed by using a Cell Counting Kit-8 (CCK-8), enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), Western Blot, alkaline phosphatase (ALP) staining, and alizarin red staining (ARS).
Results:
Under transmission electron microscopy, the IVs and EVs derived from PDLSCs displayed a double-layer membrane structure. NanoFCM analysis revealed that the average diameters of the IVs and EVs were 79.6 nm and 82.1 nm, respectively. Western Blot analysis indicated that the surface proteins CD9, CD63, and CD81 of the IVs and EVs were positively expressed, while calnexin was negatively expressed, indicating that IVs and EVs were successfully obtained. Compared with the Control group, the proliferation of PDLSCs in the LPS group was reduced, while the levels of inflammatory cytokine interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the cell supernatant were increased, the mRNA expressions of osteogenic differentiation-related genes, including osteoblast-related genes runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OCN) of PDLSCs were reduced, the protein expressions of RUNX2 and osteopontin (OPN) were also decreased (P<0.05); compared with the LPS group, the proliferation of PDLSCs in the LPS+EVs group and LPS+IVs group were significantly increased, while the levels of IL-6, TNF-α were significantly reduced, and the mRNA expressions of RUNX2, ALP, OCN were significantly increased, the protein expressions of RUNX2 and OPN were also significantly increased (P<0.05). Further, in the inflammatory microenvironment, Compared with EVs, IVs more significantly promote the proliferation of PDLSCs, inhibit TNF-α expression, enhance the expression of RUNX2 mRNA, upregulate the expression of RUNX2 and OPN proteins, increase ALP activity, and promote the formation of mineralized nodules (P<0.05).
Conclusion
IVs and EVs derived from PDLSCs can boost the proliferation of PDLSCs in an inflammatory microenvironment, inhibit the expression of inflammatory factors, and advance the osteogenic differentiation of PDLSCs. The anti-inflammatory and osteogenic effects of IVs are superior to those of EVs.
9.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
10.External review of the recommendations of the Guidelines for Evidence-based Use of Biological Agents for the Clinical Treatment of Osteoporosis: a cross-sectional survey
Lingling YU ; Shuang LIU ; Zaiwei SONG ; Qiusha YI ; Yu ZHANG ; Liyan MIAO ; Zhenlin ZHANG ; Chunli SONG ; Yaolong CHEN ; Lingli ZHANG ; Rongsheng ZHAO
China Pharmacy 2025;36(9):1025-1029
OBJECTIVE To assess the scientific rigor, clarity and feasibility of the recommendations of the Guidelines for Evidence-based Use of Biological Agents for the Clinical Treatment of Osteoporosis (hereinafter referred to as the Guideline) through external review, in order to further revise and improve the Guideline recommendations. METHODS This study employed a cross-sectional survey research design, a convenience sampling method was adopted to select frontline medical workers in the field of osteoporosis (including clinical doctors, clinical pharmacists, and nurses) as well as patients or their family members. External review was conducted through a combination of closed-ended and open-ended electronic questionnaires to get feedback from them on the appreciation,clarity and feasibility of the 32 preliminary recommendations in the Guideline. RESULTS A total of 90 external review subjects from 15 hospitals were collected, including 45 clinical doctors, 15 clinical pharmacists, 15 nurses and 15 patients or their family members. The overall appreciation degree of recommendations was 99.38%, the overall clarity degree of recommendations was 98.92%, and the overall feasibility degree of recommendations was 99.65%. At the same time, 111 subjective suggestions were collected, which provided an important reference for the further improvement of the Guideline recommendations. Based on the above feedback, the Guideline steering committee and core expert group revised the wording of 12 draft recommendations without deletion, and finally determined 32 recommendations. CONCLUSIONS The external review provides an important basis for the final formation of the Guideline, further improves the scientific rigor, clarity and feasibility of the recommendations, and ensures the standardization, practicality and implementability of the Guideline.


Result Analysis
Print
Save
E-mail