1.Effect of pravastatin on functional recovery from sciatic nerve crush injury in rats
Zan LIU ; Ran AN ; Baocheng LI
Chinese Journal of Tissue Engineering Research 2025;29(5):942-950
BACKGROUND:Pravastatin is a clinically effective drug for the treatment of hypercholesterolemia and is now found to play a beneficial role in the treatment of CNS injury;however,the mechanism remains unknown. OBJECTIVE:To ascertain the possible mechanism of action and whether pravastatin medication can expedite functional recovery following sciatic nerve crush injury. METHODS:Male Sprague-Dawley rats were randomly assigned into:pravastatin(sciatic nerve crush injury+pravastatin gavage),negative control(sciatic nerve crush injury+saline gavage),and sham operation(sciatic nerve exposure but no injury+saline gavage).While the other two groups received comparable amounts of saline gavage,the pravastatin group received postoperative pravastatin(5 mg/kg)by gavage for 1 week.The general conditions of the rats in each group were observed after operation.Sciatic function index was evaluated at the end of the 2nd,4th,6th,and 8th week after operation,and the wet mass ratio of the gastrocnemius muscle was measured at the end of the 8th week after operation.The levels of inflammatory cytokines in serum were measured using ELISA.Histomorphometrics was used to measure the number of myelinated nerve fibers,fiber diameter,axon diameter,and myelin sheath thickness.RT-qPCR assay was used to measure the relative mRNA expression of nerve growth factor and brain-derived neurotrophic factor,and western blot was used to measure the protein expression of growth-associated protein 43. RESULTS AND CONCLUSION:Compared with the negative control group,the sciatic function index in the pravastatin group recovered faster(P<0.05)and was closer to the level of the sham operation group,the expression of tumor necrosis factor α and interleukin 6 in serum was lower(P<0.05)and close to that of the sham operation group,and the relative mRNA expression of nerve growth factor and brain-derived neurotrophic factor in the sciatic nerve increased(P<0.05 or P<0.01),the relative protein expression of growth-associated protein 43 in the sciatic nerve was also significantly increased(P<0.05),the number of myelinated nerve fibers was increased more,and the values of fiber diameter,axon diameter,and myelin sheath thickness were larger(P<0.01)and closer to those of the sham operation group.To conclude,treatment with pravastatin accelerates functional recovery from sciatic nerve crush injury by a possible mechanism of inhibiting the expression of tumor necrosis factor α and interleukin 6 and promoting the secretion of neurotrophic factors nerve growth factor and brain-derived neurotrophic factor.
2.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
4.An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment
Hao-Ran CHEN ; Nan ZHOU ; Yu-Da LIU ; Li-Hua PENG
Biomolecules & Therapeutics 2025;33(2):399-407
Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both in vitro and in vivo. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. In vivo, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.
5.An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment
Hao-Ran CHEN ; Nan ZHOU ; Yu-Da LIU ; Li-Hua PENG
Biomolecules & Therapeutics 2025;33(2):399-407
Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both in vitro and in vivo. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. In vivo, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.
8.Mechanism of Intervening with Diarrhea-predominant Irritable Bowel Syndrome in Rats with Spleen Deficiency by Xingpi Capsules Through Regulating 5-HT-RhoA/ROCK2 Pathway
Gang WANG ; Lingwen CUI ; Xiangning LIU ; Rongxin ZHU ; Mingyue HUANG ; Ying SUN ; Boyang JIAO ; Ran WANG ; Chun LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):60-69
ObjectiveTo investigate the efficacy of Xingpi capsules (XPC) in treating diarrhea-predominant irritable bowel syndrome (IBS-D) with spleen deficiency and elucidate its potential molecular mechanisms. MethodsA rat model of IBS-D with spleen deficiency was established by administering senna leaf in combination with restrained stress and swimming fatigue for 14 d. Ten specific pathogen free (SPF)-grade healthy rats were used as the normal control group. After successful modeling, SPF-grade rats were randomly divided into a model group, a pinaverium bromide group (1.5 mg·kg-1), and low- and high-dose XPC groups (0.135 and 0.54 g·kg-1), with 10 rats in each group. Rats in the normal control group and the model group were given distilled water by gavage, while the remaining groups were administered corresponding drug solutions by gavage once a day for 14 consecutive days. The rat body weights and fecal condition were observed every day, and the Bristol score was recorded. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of 5-hydroxytryptamine (5-HT) in serum and colon tissue. Transmission electron microscopy was used to observe the microvilli and tight junctions in the colon. The integrity of the colonic barrier, intestinal motility, and expression of related pathway proteins were evaluated by hematoxylin-eosin (HE) staining, immunohistochemistry, and Western blot. ResultsCompared with those in the normal control group, rats in the model group showed a significantly decreased body weight and increased diarrhea rate, diarrhea grade, and Bristol score (P<0.01). HE staining revealed incomplete colonic mucosa in the model group, with evident congestion and edema observed. Electron microscopy results indicated decreased density and integrity of the colonic barrier, shedding and disappearance of microvilli, and significant widening of tight junctions. The expression levels of colonic tight junction proteins Occludin and Claudin-5 were downregulated (P<0.01), and the levels of 5-HT in serum and colon tissue were elevated (P<0.01). The small intestine propulsion rate significantly increased (P<0.01), and the expression of contractile proteins Ras homolog family member A (RhoA) and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) in colon and phosphorylation of myosin light chain (MLC20) were upregulated (P<0.01). Compared with the model group, the treatment groups showed alleviated diarrhea, diarrhea-associated symptoms, and pathological manifestations of colon tissue to varying degrees. Specifically, high-dose XPC exhibited effectively relieved diarrhea, promoted recovery of colonic mucosal structure, significantly reduced congestion and edema, upregulated expression of Occludin and Claudin-5 (P<0.01), decreased levels of 5-HT in serum and colon tissue (P<0.05,P<0.01), significantly slowed small intestine propulsion rate (P<0.01), and significantly downregulated expression of contractile proteins RhoA and ROCK2 in colon and phosphorylation of MLC20 (P<0.05,P<0.01). ConclusionXPC effectively alleviates symptoms of spleen deficiency and diarrhea and regulates the secretion of brain-gut peptide. The characteristics of XPC are mainly manifested in alleviating IBS-D with spleen deficiency from the aspects of protecting intestinal mucosa and inhibiting smooth muscle contraction, and the mechanism is closely related to the regulation of the 5-HT-RhoA/ROCK2 pathway expression.
9.Research advances in autoimmune pancreatitis with pancreatic exocrine insufficiency
Xiang AO ; Chenxiao LIU ; Xianda ZHANG ; Taojing RAN ; Chunhua ZHOU ; Duowu ZOU
Journal of Clinical Hepatology 2025;41(2):395-400
Autoimmune pancreatitis is a special type of chronic pancreatitis that can lead to abnormal pancreatic exocrine function in patients. Autoimmune pancreatitis comorbid with pancreatic exocrine insufficiency has a complex pathogenesis, and there is limited research on this topic, leading to the lack of understanding of such patients in clinical practice. This article introduces the epidemiology of autoimmune pancreatitis, briefly describes the pathogenesis of pancreatic exocrine insufficiency caused by autoimmune pancreatitis, and summarizes the various detection methods for pancreatic exocrine function, nutritional assessments, lifestyle management, and drug therapy, in order to strengthen the understanding of autoimmune pancreatitis comorbid with pancreatic exocrine insufficiency and improve the clinical diagnosis and treatment of pancreatic exocrine insufficiency.
10.Research progress on traditional Chinese medicine in the intervention of cerebral ischemia reperfusion injury by regulating NLRP3 inflammasome
Haoge CHENG ; Chenfei HE ; Chunlong RAN ; Chiyuan MA ; Xiangzhe LIU
China Pharmacy 2025;36(2):245-250
Cerebral ischemia reperfusion injury (CIRI) is a secondary brain injury that may occur in patients with ischemic stroke during the process of blood flow recovery. NOD-like receptor protein 3 (NLRP3) inflammasome plays an important role in the occurrence and development of CIRI. Regulating the activity of NLRP3 inflammasome can induce cell pyroptosis, induce neuroinflammatory response, promote macrophage/microglial polarization, destroy the blood-brain barrier, affect angiogenesis and neurogenesis, thereby affecting CIRI. Traditional Chinese medicine has obvious advantages in the treatment of CIRI. In this paper, with NLRP3 inflammasome as the core, we systematically elucidated the mechanism of action of traditional Chinese medicines on CIRI, and found that traditional Chinese medicines monomers (such as baicalin, polygalasaponin F) and traditional Chinese medicines compound formulas (such as Huangqi guizhi wuwu decoction, Yiqi shengqing formulation) can inhibit NLRP3 inflammasome activity, reduce inflammatory response and oxidative stress, and improve neuronal injury, thereby reducing CIRI.

Result Analysis
Print
Save
E-mail