1.Yishen Huashi Granules Protect Kidneys of db/db Mice via p38 MAPK Signaling Pathway
Kaidong ZHOU ; Sitong WANG ; Ge JIN ; Yanmo CAI ; Xin ZHOU ; Yunhua LIU ; Xinxue ZHANG ; Min ZHANG ; Zongjiang ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):58-68
ObjectiveTo explore the mechanism of Yishen Huashi granules in alleviating renal tubular epithelial cell injury and relieving diabetic kidney disease by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. MethodsThe db/db mice of 12 weeks old were randomly assigned into model , dapagliflozin (1.6 mg·kg-1), and Yishen Huashi granules (4.7 g·kg-1), and db/m mice were used as the control group. The general conditions of mice were observed, and fasting blood glucose and 24-h urinary protein and albumin-to-creatinine ratio (ACR) were measured at weeks 0 and 12 of administration. After 12 weeks of treatment, the levels of serum creatinine (SCr), blood urea (UREA), triglycerides (TG), total cholesterol (TC), and low density lipoprotein (LDL) were measured. The pathological changes in the renal tissue were observed by hematoxylin-eosin (HE) staining, Periodic acid-Schiff (PAS) staining, Mallory staining, and transmission electron microscopy. Real-time PCR was employed to determine the mRNA levels of monocyte chemotactic protein-1 (MCP-1) and CC chemokine receptor-2 (CCR2) in the renal tissue of mice. The immunohistochemical assay was employed to examine the expression of p38, phospho-p38 (p-p38), MCP-1, and CCR2 in the renal tissue of mice. Western blotting was employed to measure the protein levels of p-p38, p38, MCP-1, and CCR2 in the renal tissue of mice.HK-2 cells cultured in vitro were grouped as follows: negative control, high glucose(30 mmol·L-1), Yishen Huashi granule-containing serum, and SB203580. After 48 h of cell culture in each group, RNA were extracted and the levels of MCP-1, and CCR2 mRNA were determined by Real-time PCR,proteins were extracted and the levels of p38, p-p38, MCP-1, and CCR2 were determined by Western blot. ResultsThe in vivo experiments showed that before treatment, other groups had higher body weight, blood glucose level, 24 h urinary protein, and ACR than the control group (P<0.05,P<0.01). After 12 weeks of treatment, compared with the model group, the Yishen Huashi granules group showed improved general conditions, a decreasing trend in body weight, lowered levels of blood glucose, 24-h urinary protein, and ACR (P<0.01), reduced SCr and UREA (P<0.01), and declined levels of TC, TG, and LDL (P<0.05,P<0.01). Compared with the model group, the Yishen Huashi granules group showed alleviated damage and interstitial fibrosis in the renal tissue as well as reductions in glomerular foot process fusion and basement membrane thickening. Moreover, the Yishen Huashi granules group showed down-regulated mRNA levels of MCP-1 and CCR2 (P<0.01), reduced positive expression of p-p38, MCP-1, and CCR2 (P<0.01), and down-regulated protein levels of p-p38/p38, MCP-1, and CCR2 (P<0.05) in the renal tissue. The cell experiment showed that compared with the high glucose group, the Yishen Huashi granule-containing serum group showcased down-regulated mRNA levels of MCP-1 and CCR2 (P<0.01) and down-regulated protein levels of p-p38/p38, MCP-1, and CCR2(P<0.05,P<0.01). ConclusionYishen Huashi granules can regulate glucose-lipid metabolism, reduce 24 h urinary protein and ACR, improve the renal function, alleviate the renal tubule injury caused by high glucose, and protect renal tubule epithelial cells in db/db mice by reducing MCP-1/CCR2 activation via the p38 MAPK signaling pathway.
2.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
3.Effect of Shenkang Injection on Podocyte Apoptosis and GRP78/CHOP Signaling Pathway in db/db Mice with Diabetic Kidney Disease Based on Endoplasmic Reticulum Stress
Yanmo CAI ; Sitong WANG ; Xin ZHOU ; Ge JIN ; Kaidong ZHOU ; Yunhua LIU ; Fengfeng ZHANG ; Xinxue ZHANG ; Zongjiang ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):81-90
ObjectiveTo investigate the mechanism of Shenkang injection in delaying diabetic kidney disease by regulating endoplasmic reticulum stress and attenuating podocyte apoptosis through the Glucose regulated protein 78 ( GRP78 ) / transcription factor C / EBP homologous protein ( CHOP ) signaling pathway (GRP78/CHOP) signaling pathway. MethodsFor the animal experiment, 10 12-week-old db/m mice were selected as a normal group, and 30 12-week-old db/db mice were randomly divided into a model group, a Shenkang injection group (15.6 mL·kg-1), and a dapagliflozin group (1.6 mg·kg-1). To observe the general condition of mice, fasting blood glucose, urinary albumin/urine creatinine (ACR), and 24 h urine protein quantification were detected in each group before drug administration. After 12 weeks of drug treatment, mice were tested for fasting blood glucose, total cholesterol (TC), triglyceride (TG), low-density cholesterol (LDL), ACR, 24 h urine protein quantification, blood creatinine (SCr), and blood urea (UREA). Hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and transmission electron microscopy were used to observe the pathologic morphology in renal tissue. Immunohistochemistry was used to detect the expressions of nephroprotective marker protein (Nephrin), glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) in renal tissue. Western blot was used to detect the expressions of GRP78, CHOP, Bcl-2, Bax, and Nephrin proteins, and Real-time polymerase chain reaction (Real-time PCR) was employed to detect the expressions of Nephrin, GRP78, CHOP, Bcl-2, and Bax mRNAs in renal tissue. ResultsBefore drug administration, compared with those in the normal group, the body mass of db/db mice was significantly increased, and blood glucose, 24 h urine protein quantification, and ACR were significantly elevated in the Shenkang injection group and Dapagliflozin group (P<0.01). After 12 weeks of administration, compared with those in the model group, the general state of mice in the Shenkang injection group was significantly improved, and the body mass was decreased. The blood glucose was significantly reduced (P<0.01), and blood lipids TC, TG, and LDL were significantly decreased (P<0.05, P<0.01). The 24 h urine protein quantification and ACR were significantly decreased (P<0.05), and SCr and UREA were significantly reduced (P<0.01). Compared with those of the model group, the pathologic results of the Shenkang injection group showed that proliferation of mesangial cells, reduction of inflammatory cell infiltration, and alleviation of renal tubular vacuolization and podocyte damage were observed in renal tissue of mice. Electron microscopy showed that fusion of the pedicle protruding and thickening of the basement membrane were reduced. Immunohistochemistry results showed that the expressions of GRP78, CHOP, and Bax proteins were significantly reduced (P<0.01), and the expressions of Nephrin and Bcl-2 proteins were significantly increased (P<0.01) in renal tissue of the Shenkang injection group. Western blot results showed that the expressions of Nephrin and Bcl-2 in the Shenkang injection group were significantly increased (P<0.05, P<0.01), and the expressions of GRP78, CHOP, and Bax proteins were significantly decreased (P<0.05, P<0.01). Real-time PCR results showed that the expressions of GRP78, CHOP, and Bax mRNAs were down regulated in the Shenkang injection group (P<0.01), and the expressions of Nephrin and Bcl-2 mRNAs were up regulated (P<0.01). ConclusionShenkang injection inhibits endoplasmic reticulum stress response and podocyte apoptosis by regulating the GRP78/CHOP signaling pathway, which in turn ensures the integrity of glomerular filtration barrier, reduces the occurrence of proteinuria, improves renal function, and thus delays the progression of diabetic kidney disease.
4.Effect of Shenkang Injection on Podocyte Apoptosis and GRP78/CHOP Signaling Pathway in db/db Mice with Diabetic Kidney Disease Based on Endoplasmic Reticulum Stress
Yanmo CAI ; Sitong WANG ; Xin ZHOU ; Ge JIN ; Kaidong ZHOU ; Yunhua LIU ; Fengfeng ZHANG ; Xinxue ZHANG ; Zongjiang ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):81-90
ObjectiveTo investigate the mechanism of Shenkang injection in delaying diabetic kidney disease by regulating endoplasmic reticulum stress and attenuating podocyte apoptosis through the Glucose regulated protein 78 ( GRP78 ) / transcription factor C / EBP homologous protein ( CHOP ) signaling pathway (GRP78/CHOP) signaling pathway. MethodsFor the animal experiment, 10 12-week-old db/m mice were selected as a normal group, and 30 12-week-old db/db mice were randomly divided into a model group, a Shenkang injection group (15.6 mL·kg-1), and a dapagliflozin group (1.6 mg·kg-1). To observe the general condition of mice, fasting blood glucose, urinary albumin/urine creatinine (ACR), and 24 h urine protein quantification were detected in each group before drug administration. After 12 weeks of drug treatment, mice were tested for fasting blood glucose, total cholesterol (TC), triglyceride (TG), low-density cholesterol (LDL), ACR, 24 h urine protein quantification, blood creatinine (SCr), and blood urea (UREA). Hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and transmission electron microscopy were used to observe the pathologic morphology in renal tissue. Immunohistochemistry was used to detect the expressions of nephroprotective marker protein (Nephrin), glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) in renal tissue. Western blot was used to detect the expressions of GRP78, CHOP, Bcl-2, Bax, and Nephrin proteins, and Real-time polymerase chain reaction (Real-time PCR) was employed to detect the expressions of Nephrin, GRP78, CHOP, Bcl-2, and Bax mRNAs in renal tissue. ResultsBefore drug administration, compared with those in the normal group, the body mass of db/db mice was significantly increased, and blood glucose, 24 h urine protein quantification, and ACR were significantly elevated in the Shenkang injection group and Dapagliflozin group (P<0.01). After 12 weeks of administration, compared with those in the model group, the general state of mice in the Shenkang injection group was significantly improved, and the body mass was decreased. The blood glucose was significantly reduced (P<0.01), and blood lipids TC, TG, and LDL were significantly decreased (P<0.05, P<0.01). The 24 h urine protein quantification and ACR were significantly decreased (P<0.05), and SCr and UREA were significantly reduced (P<0.01). Compared with those of the model group, the pathologic results of the Shenkang injection group showed that proliferation of mesangial cells, reduction of inflammatory cell infiltration, and alleviation of renal tubular vacuolization and podocyte damage were observed in renal tissue of mice. Electron microscopy showed that fusion of the pedicle protruding and thickening of the basement membrane were reduced. Immunohistochemistry results showed that the expressions of GRP78, CHOP, and Bax proteins were significantly reduced (P<0.01), and the expressions of Nephrin and Bcl-2 proteins were significantly increased (P<0.01) in renal tissue of the Shenkang injection group. Western blot results showed that the expressions of Nephrin and Bcl-2 in the Shenkang injection group were significantly increased (P<0.05, P<0.01), and the expressions of GRP78, CHOP, and Bax proteins were significantly decreased (P<0.05, P<0.01). Real-time PCR results showed that the expressions of GRP78, CHOP, and Bax mRNAs were down regulated in the Shenkang injection group (P<0.01), and the expressions of Nephrin and Bcl-2 mRNAs were up regulated (P<0.01). ConclusionShenkang injection inhibits endoplasmic reticulum stress response and podocyte apoptosis by regulating the GRP78/CHOP signaling pathway, which in turn ensures the integrity of glomerular filtration barrier, reduces the occurrence of proteinuria, improves renal function, and thus delays the progression of diabetic kidney disease.
5.Identification and Analysis of MHCⅡ Genes in Wuzhishan Pigs
Yuanyuan LIU ; Wenshui XIN ; Zhe CHAO ; Zongxi CAO ; Yifei CAI ; Qiang LI ; Lingwei LI ; Guangliang LIU
Laboratory Animal and Comparative Medicine 2025;45(3):340-348
ObjectiveTo obtain the gene sequences of major histocompatibility complex (MHC ) Ⅱgenes of Wuzhishan pigs, analyze their genetic information, and explore the biological functions of their MHC system. MethodsSpleen samples were collected from 3 adult male Wuzhishan pigs. Primers were designed according to MHCⅡ gene sequences, and the coding sequences of Wuzhishan pig MHCⅡ genes were amplified by RT-PCR. Sanger sequencing was performed to determine the full-length sequences. Bioinformatics tools were employed to analyze the physicochemical properties, phylogenetic relationships, conserved motifs, structural domains, chromosomal localization, and syntenic relationships of these genes. ResultsEight MHCⅡ genes were identified in Wuzhishan pigs, designated as SLA-DRA, SLA-DQA, SLA-DQB, SLA-DRB, SLA-DOB, SLA-DMB, SLA-DMA and SLA-DOA. The full-length sequences of these genes were determined by Sanger sequencing and subsequently deposited in GenBank under accession numbers PQ182796, PQ182797, PQ182798, PQ182799, PQ182800, PQ182801, PQ182802, and PQ164779. Phylogenetic analysis showed that the six MHCⅡ genes of Wuzhishan pigs clustered separately from their counterparts in Duroc, Meishan, Large White, and Bama pigs, indicating distinct evolutionary trajectories. Bioinformatics analysis demonstrated that most MHC Ⅱ proteins were hydrophobic, with molecular weights ranging from 27 700 to 30 000 Da. Genes within the same subregion shared conserved motifs. Specifically, four MHCⅡ proteins encoded by SLA-DQB, SLA-DRB, SLA-DOB, and SLA-DMB contained the MHCⅡβ conserved domain, while those encoded by the genes SLA-DRA, SLA-DQA, SLA-DMA, and SLA-DOA contained the MHCⅡα conserved domain. The eight MHCⅡ genes were scattered along the long arm of chromosome 7 in the Wuzhishan pigs, exhibiting syntenic relationships with three human genes and five Duroc pig genes. ConclusionThe MHCⅡ genes of Wuzhishan pigs may possess a unique evolutionary origin.
6.Identification and Analysis of MHCⅡ Genes in Wuzhishan Pigs
Yuanyuan LIU ; Wenshui XIN ; Zhe CHAO ; Zongxi CAO ; Yifei CAI ; Qiang LI ; Lingwei LI ; Guangliang LIU
Laboratory Animal and Comparative Medicine 2025;45(3):340-348
ObjectiveTo obtain the gene sequences of major histocompatibility complex (MHC ) Ⅱgenes of Wuzhishan pigs, analyze their genetic information, and explore the biological functions of their MHC system. MethodsSpleen samples were collected from 3 adult male Wuzhishan pigs. Primers were designed according to MHCⅡ gene sequences, and the coding sequences of Wuzhishan pig MHCⅡ genes were amplified by RT-PCR. Sanger sequencing was performed to determine the full-length sequences. Bioinformatics tools were employed to analyze the physicochemical properties, phylogenetic relationships, conserved motifs, structural domains, chromosomal localization, and syntenic relationships of these genes. ResultsEight MHCⅡ genes were identified in Wuzhishan pigs, designated as SLA-DRA, SLA-DQA, SLA-DQB, SLA-DRB, SLA-DOB, SLA-DMB, SLA-DMA and SLA-DOA. The full-length sequences of these genes were determined by Sanger sequencing and subsequently deposited in GenBank under accession numbers PQ182796, PQ182797, PQ182798, PQ182799, PQ182800, PQ182801, PQ182802, and PQ164779. Phylogenetic analysis showed that the six MHCⅡ genes of Wuzhishan pigs clustered separately from their counterparts in Duroc, Meishan, Large White, and Bama pigs, indicating distinct evolutionary trajectories. Bioinformatics analysis demonstrated that most MHC Ⅱ proteins were hydrophobic, with molecular weights ranging from 27 700 to 30 000 Da. Genes within the same subregion shared conserved motifs. Specifically, four MHCⅡ proteins encoded by SLA-DQB, SLA-DRB, SLA-DOB, and SLA-DMB contained the MHCⅡβ conserved domain, while those encoded by the genes SLA-DRA, SLA-DQA, SLA-DMA, and SLA-DOA contained the MHCⅡα conserved domain. The eight MHCⅡ genes were scattered along the long arm of chromosome 7 in the Wuzhishan pigs, exhibiting syntenic relationships with three human genes and five Duroc pig genes. ConclusionThe MHCⅡ genes of Wuzhishan pigs may possess a unique evolutionary origin.
7.Qihuang needle therapy for autism spectrum disorder with sleep disorder: a multi-center randomized controlled trial.
Bingxu JIN ; Qizhen LIU ; Jiahao TANG ; Yong ZHAO ; Jing XIN ; Yuan ZHOU ; Haiyan CAI ; Zhanxin HUO ; Xiaohong CHEN ; Yan BAI
Chinese Acupuncture & Moxibustion 2025;45(3):322-326
OBJECTIVE:
To observe the clinical efficacy of Qihuang needle therapy for autism spectrum disorder (ASD) children with sleep disorder.
METHODS:
A total of 60 ASD children with sleep disorder were randomly divided into an observation group and a control group, 30 cases in each group. Both groups were treated with structured education intervention, 60 min each time, once a day, 6 times a week. Qihuang needle therapy was applied at Yintang (GV24+), Baihui (GV20) and bilateral Jueyinshu (BL14), Xinshu (BL15) in the observation group, multi-direction needling was delivered and without needle retaining. The treatment was given 2 times a week, each treatment was delivered at interval of 2 days at least. Behavioral intervention was adopted in the control group. Treatment for consecutive 12 weeks was required in both groups. Before and after treatment, the scores of children's sleep habits questionnaire (CSHQ), the autism behavior checklist (ABC), the childhood autism rating scale (CARS), and the childhood autism behavior scale (CABS) were observed in the two groups.
RESULTS:
After treatment, the scores of CSHQ, ABC, CARS and CABS were decreased compared with those before treatment (P<0.01), and the above scores in the observation group were lower than those in the control group (P<0.05).
CONCLUSION
Qihuang needle therapy can effectively treat ASD with sleep disorder, improve the core symptoms of ASD and the sleep quality.
Humans
;
Autism Spectrum Disorder/physiopathology*
;
Male
;
Female
;
Child
;
Sleep Wake Disorders/physiopathology*
;
Child, Preschool
;
Acupuncture Therapy
;
Acupuncture Points
;
Treatment Outcome
;
Sleep
;
Needles
8.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)
9.Effects of Saccharomyces cerevisiae chassis cells with different squalene content on triterpenoid synthesis.
Feng ZHANG ; Kang-Xin HOU ; Yue ZHANG ; Hong-Ping HOU ; Yue ZHANG ; Chao-Yue LIU ; Xue-Mi HAO ; Jia LIU ; Cai-Xia WANG
China Journal of Chinese Materia Medica 2025;50(8):2130-2136
Many triterpenoid compounds have been successfully heterologously synthesized in Saccharomyces cerevisiae. To increase the yield of triterpenoids, various metabolic engineering strategies have been developed. One commonly applied strategy is to enhance the supply of precursors, which has been widely used by researchers. Squalene, as a precursor to triterpenoid biosynthesis, plays a crucial role in the synthesis of these compounds. This study primarily investigates the effect of different squalene levels in chassis strains on the synthesis of triterpenoids(oleanolic acid and ursolic acid), and the underlying mechanisms are further explored using real-time quantitative PCR(qPCR) analysis. The results demonstrate that the chassis strain CB-9-5, which produces high levels of squalene, inhibits the synthesis of oleanolic acid and ursolic acid. In contrast, chassis strains with moderate to low squalene production, such as Y8-1 and CNPK, are more conducive to the synthesis of oleanolic acid and ursolic acid. The qPCR analysis reveals that the expression levels of ERG1, βAS, and CrCYP716A154 in the oleanolic acid-producing strain CB-OA are significantly lower than those in the control strains C-OA and Y-OA, suggesting that high squalene production in the chassis strains suppresses the transcription of certain genes, leading to a reduced yield of triterpenoids. Our findings indicate that when constructing S. cerevisiae strains for triterpenoid production, chassis strains with high squalene content may suppress the expression of certain genes, ultimately lowering their production, whereas chassis strains with moderate squalene levels are more favorable for triterpenoid biosynthesis.
Squalene/analysis*
;
Saccharomyces cerevisiae/genetics*
;
Triterpenes/metabolism*
;
Metabolic Engineering
;
Oleanolic Acid/biosynthesis*
;
Ursolic Acid
10.Stimulation mechanism of osteoblast proliferation and differentiation by Duzhong Decoction-containing serum through L-VGCCs.
Ze-Bin CHEN ; Lan-Lan LUO ; Xin-Yi SHI ; Rui-Tong ZHAO ; Cai-Xian HU ; Yun-Ying FU ; Su-Zhen CHAO ; Bo LIU
China Journal of Chinese Materia Medica 2025;50(12):3335-3345
This paper aimed to explore the effects of Duzhong Decoction(DZD)-containing serum on the proliferation and osteoblast differentiation of MC3T3-E1 cells through L-type voltage-gated calcium channels(L-VGCCs). L-VGCCs inhibitors, nifedipine and verapamil, were used to block L-VGCCs in osteoblasts. MC3T3-E1 cells were divided into a control group, a low-dose DZD-containing serum(L-DZD) group, a medium-dose DZD-containing serum(M-DZD) group, a high-dose DZD-containing serum(H-DZD) group, a nifedipine group, a H-DZD + nifedipine group, verapamil group, and a H-DZD + verapamil group. The CCK-8 method was used for cell proliferation analysis, alkaline phosphatase(ALP) assay kits for intracellular ALP activity measurement, Western blot for protein expression level in cells, real-time fluorescence quantitative PCR technology for intracellular mRNA expression level determination, fluorescence spectrophotometer for free Ca~(2+) concentration determination in osteoblasts, and alizarin red staining(ARS) for mineralized nodule formation in osteoblasts. The experimental results show that compared to the control group, DZD groups can promote MC3T3-E1 cell proliferation, ALP activity, and mineralized nodule formation, increase intracellular Ca~(2+) concentrations, and upregulate the protein expression of bone morphogenetic protein 2(BMP2), collagen Ⅰ(COL1), α2 subunit protein of L-VGCCs(L-VGCCα2), and the mRNA expression of Runt-related transcription factor 2(RUNX2), and BMP2. After blocking L-VGCCs with nifedipine and verapamil, the intervention effects of DZD-containing serum were inhibited to varying degrees. Both nifedipine and verapamil could inhibit ALP activity, reduce mineralized nodule areas, and downregulate the expression of bone formation-related proteins. Moreover, the effects of DZD-containing serum on increasing MC3T3-E1 cell proliferation, osteoblast differentiation, and Ca~(2+) concentrations, upregulating the mRNA expression of osteoprotegerin(OPG) and protein expression of phosphorylated protein kinase B(p-Akt) and phosphorylated forkhead box protein O1(p-FOXO1), and upregulating phosphatase and tensin homolog(PTEN) expression were reversed by nifedipine. The results indicate that DZD-containing serum can increase the Ca~(2+) concentration in MC3T3-E1 cells to promote bone formation, which may be mediated by L-VGCCs and the PTEN/Akt/FoxO1 signaling pathway, providing a new perspective on the mechanism of DZD in treating osteoporosis.
Animals
;
Osteoblasts/metabolism*
;
Cell Proliferation/drug effects*
;
Cell Differentiation/drug effects*
;
Mice
;
Drugs, Chinese Herbal/pharmacology*
;
Calcium Channels, L-Type/genetics*
;
Alkaline Phosphatase/genetics*
;
Serum/chemistry*
;
Cell Line
;
Osteogenesis/drug effects*
;
Bone Morphogenetic Protein 2/genetics*

Result Analysis
Print
Save
E-mail