1.Efficacy Connotation and Mechanisms of Shudi Qiangjin Pills Against Steroid-induced Osteonecrosis of Femoral Head Based on "Disease-Syndrome-Formula" Association Network
Zhijian CHEN ; Suya ZHANG ; Longlong DING ; Guixin ZHANG ; Bo LIU ; Baohong MI ; Yanqiong ZHANG ; Na LIN ; Weiheng CHEN ; Chunzhu GONG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):88-99
ObjectiveTo elucidate the efficacy connotation of Shudi Qiangjin pills (SQP) against liver and kidney deficiency in steroid-induced osteonecrosis of femoral head (SONFH) from the perspective of the "disease-syndrome-formula" association and to clarify the underlying mechanisms based on in vivo and in vitro experiment validation. MethodsThe chemical components and the corresponding putative targets of SQP were collected from the Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine (TCMIP) v2.0, the Encyclopedia of Traditional Chinese Medicine (ETCM) v2.0, and HERB databases. The SONFH-related genes were identified based on the differential expression profiles of peripheral blood of patients with SONFH compared to the healthy volunteers, and the disease phenotype-related targets were collected from the TCMIP v2.0 database. Then, the interaction network of "SONFH-related genes and candidate targets of SQP" was constructed based on "gene-gene interaction information", and the major network targets were screened by calculating the topological characteristic values of the network followed by the functional mining according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the SoFDA database. After that, the SONFH rat model was prepared by lipopolysaccharide combined with methylprednisolone injection, and 2.5, 5, 7.5 g·kg-1 SQP (once per day, equivalent to 1, 2, and 3 times the clinical equivalent dose, respectively) or 7.3×10-3 g·kg-1 of alendronate sodium (ALS, once per week, equivalent to the clinical equivalent dose) was given for 8 weeks. The effect characteristics of SQP and ALS in the treatment of SONFH were evaluated by micro-computed tomography scanning, hematoxylin and eosin staining, alkaline phosphatase (ALP) staining, immunohistochemical staining, enzyme-linked immunosorbent assay, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL)staining, and a comparative efficacy analysis was conducted with ALS. In addition, SONFH cell models were prepared by dexamethasone stimulation of osteoblasts, and the intervention was carried out with the medicated serum of SQP at the aforementioned three doses. Cell counting kit-8, ALP staining, ALP activity assay, alizarin red staining, and flow cytometry were employed to investigate the regulatory effect of SQP on osteoblasts. The expression levels of osteogenesis-related proteins and key factors of the target signaling axis were detected by quantitative real-time polymerase chain reaction and Western blot. ResultsThe network analysis results demonstrated that the candidate targets of SQP primarily exerted their therapeutic effects through key signaling pathways, including phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt), lipid metabolism and atherosclerosis, prolactin, chemokines, and neurotrophic factors pathways. These pathways were significantly involved in critical biological processes such as muscle and bone metabolism and the regulation of the "neuro-endocrine-immune" network, thereby addressing both modern medical symptoms (e.g., delayed skeletal maturation and recurrent fractures) and traditional Chinese medicine (TCM) symptoms (e.g., fatigue, aversion to cold, cold limbs, and pain in the limbs and joints in patients with SONFH characterized by liver and kidney deficiency syndrome. Among these pathways, the PI3K/Akt signaling pathway exhibited the highest degree of enrichment. The in vivo experimental results demonstrated that starting from the 4th week after modeling, the modeling group exhibited a significant reduction in body weight compared to the control group (P<0.05). After six weeks of treatment, all dosage groups of SQP showed significantly higher body weights compared to the model group (P<0.01). Compared with the normal group, the model group exhibited significant decreases in bone mineral density (BMD), bone volume fraction (BV/TV), trabecular number (Tb.N), osteocalcin (OCN), alkaline phosphatase (ALP) levels in femoral head tissue, and serum bone-specific alkaline phosphatase (BALP) (P<0.01), along with significant increases in trabecular separation (Tb.Sp), empty lacunae rate in tissue, and apoptosis rate (P<0.01). In comparison to the model group, the SQP intervention groups showed significant improvements in BMD, BV/TV and Tb.N (P<0.01), significant reductions in Tb.Sp, empty lacunae rate and apoptosis rate (P<0.05), and significant increases in protein levels of OCN and ALP as well as BALP content (P<0.05). The in vitro experimental results revealed that all dosage groups of SQP medicated serum showed no toxic effects on osteoblast. Compared with the normal group, the model group displayed significant suppression of osteoblast proliferation activity, ALP activity, and calcified nodule formation rate (P<0.01), significant decreases in mRNA transcription levels of OCN and Runt-related transcription factor 2 (RUNX2) (P<0.01), significant reductions in protein content of osteopontin (OPN), typeⅠ collagen (ColⅠ)A1, B-cell lymphoma-2 (Bcl-2), PI3K, and phosphorylated (p)-Akt (P<0.01), and a significant increase in apoptosis rate (P<0.01). Compared with the model group, the SQP medicated serum intervention groups exhibited significant increases in proliferation activity, ALP activity, calcified nodule formation rate, mRNA transcription levels of OCN and RUNX2, and protein content of OPN, ColⅠA1, Bcl-2, PI3K, and p-Akt (P<0.05), along with a significant decrease in apoptosis rate (P<0.01). ConclusionSQP can effectively reduce the disease severity of SONFH with liver and kidney deficiency syndrome and improve bone microstructure, with the therapeutic effects exhibiting a dose-dependent manner. The mechanism may be related to its regulation of key processes such as muscle and bone metabolism and the correction of imbalances in the "neuro-endocrine-immune" network, thereby promoting osteoblast differentiation and inhibiting osteoblast apoptosis. The PI3K/Akt signaling axis is likely one of the key pathways through which this formula exerts its effects.
2.Quality Evaluation of Naomaili Granules Based on Multi-component Content Determination and Fingerprint and Screening of Its Anti-neuroinflammatory Substance Basis
Ya WANG ; Yanan KANG ; Bo LIU ; Zimo WANG ; Xuan ZHANG ; Wei LAN ; Wen ZHANG ; Lu YANG ; Yi SUN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):170-178
ObjectiveTo establish an ultra-performance liquid fingerprint and multi-components determination method for Naomaili granules. To evaluate the quality of different batches by chemometrics, and the anti-neuroinflammatory effects of water extract and main components of Naomaili granules were tested in vitro. MethodsThe similarity and common peaks of 27 batches of Naomaili granules were evaluated by using Ultra performance liquid chromatography (UPLC) fingerprint detection. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology was used to determine the content of the index components in Naomaili granules and to evaluate the quality of different batches of Naomaili granules by chemometrics. LPS-induced BV-2 cell inflammation model was used to investigate the anti-neuroinflammatory effects of the water extract and main components of Naomaili granules. ResultsThe similarity of fingerprints of 27 batches of samples was > 0.90. A total of 32 common peaks were calibrated, and 23 of them were identified and assigned. In 27 batches of Naomaili granules, the mass fractions of 14 components that were stachydrine hydrochloride, leonurine hydrochloride, calycosin-7-O-glucoside, calycosin,tanshinoneⅠ, cryptotanshinone, tanshinoneⅡA, ginsenoside Rb1, notoginsenoside R1, ginsenoside Rg1, paeoniflorin, albiflorin, lactiflorin, and salvianolic acid B were found to be 2.902-3.498, 0.233-0.343, 0.111-0.301, 0.07-0.152, 0.136-0.228, 0.195-0.390, 0.324-0.482, 1.056-1.435, 0.271-0.397, 1.318-1.649, 3.038-4.059, 2.263-3.455, 0.152-0.232, 2.931-3.991 mg∙g-1, respectively. Multivariate statistical analysis showed that paeoniflorin, ginsenoside Rg1, ginsenoside Rb1 and staphylline hydrochloride were quality difference markers to control the stability of the preparation. The results of bioactive experiment showed that the water extract of Naomaili granules and the eight main components with high content in the prescription had a dose-dependent inhibitory effect on the release of NO in the cell supernatant. Among them, salvianolic acid B and ginsenoside Rb1 had strong anti-inflammatory activity, with IC50 values of (36.11±0.15) mg∙L-1 and (27.24±0.54) mg∙L-1, respectively. ConclusionThe quality evaluation method of Naomaili granules established in this study was accurate and reproducible. Four quality difference markers were screened out, and eight key pharmacodynamic substances of Naomaili granules against neuroinflammation were screened out by in vitro cell experiments.
3.Identification and Biological Characterization of Pathogen and Screening of Effective Fungicides for Wilt of Tetradium ruticarpum
Yuxin LIU ; Qin XU ; Yue YUAN ; Tiantian GUO ; Zheng'en XIAO ; Shaotian ZHANG ; Ming LIU ; Fuqiang YIN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):198-206
ObjectiveTo identify the pathogen species responsible for the wilt disease of Tetradium ruticarpum in Chongqing, investigate there biological characteristics, and screen effective fungicides, so as to provide a theoretical basis for disease control in production. MethodsThe pathogen was isolated via the tissue culture method. Pathogenicity was verified according to Koch's postulates. The pathogen was identified based on morphological characteristics and multi-gene phylogenetic analysis. The mycelial growth rate method was used for biological characterization of the pathogen and fungicide screening. ResultsThe pathogen colonies were nearly circular with irregular edges, white, short, velvety aerial hyphae, and pale purple undersides. Macroconidia were colorless, sickle-shaped, with 3-5 septa, while microconidia were transparent, elliptical, aseptate or with 1-2 septa. Multi-gene phylogenetic analysis showed that the pathogen clustered in the same clade as Fusarium fujikuroi with 100% support, which, combined with morphological characteristics, identified the pathogen causing wilt of T. ruticarpum in Chongqing as F. fujikuroi. The optimal conditions for the mycelial growth of F. fujikuroi were mung bean agar (MBA) with glucose as the carbon source, beef extract and yeast powder as nitrogen sources, 28 ℃, pH 7.0, and alternating light/dark conditions. The optimal conditions for sporulation were potato dextrose agar (PDA) with glucose as the carbon source, beef extract as the nitrogen source, 28 ℃, pH 7.0, and complete darkness. Among chemical fungicides, phenazine-1-carboxylic acid exhibited the strongest inhibitory effect on F. fujikuroi. Shenqinmycin and tetramycin were the most effective bio-fungicides. ConclusionThis study is the first to report F. fujikuroi as the causal agent of wilt disease in T. rutaecarpa. The chemical fungicide phenazine-1-carboxylic acid and the bio-fungicides shenqinmycin and tetramycin showed strong inhibitory effects against F. fujikuroi.
4.Clinical Application and Pharmacological Effects of Guizhi Fulingwan in Treatment of Uterine Fibroids: A Review
Xiang ZHANG ; Xiaoli WEN ; Biting CHENG ; Hongning LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):299-307
Uterine fibroids are a common benign tumor of the female reproductive system, characterized by increased menstrual flow, lower abdominal pain, and prolonged menstrual periods. Modern medicine believes that the onset of this disease is related to genetic factors, environmental factors, hormone levels, et al, while the specific mechanism remains unclear, and the prevention and treatment of uterine fibroids has become a hot topic of concern for many experts and scholars in the medical field. At present, the treatment of uterine fibroids in clinical practice is mainly based on hormone drugs and uterine artery embolization, and severe cases require hysterectomy. However, the use of hormone drugs for treatment has serious side effects and is prone to recurrence after surgery. Since hysterectomy can cause severe harm to women, it is necessary to explore safer and more effective treatment methods. Traditional Chinese medicine (TCM) has rich clinical experience in the treatment of uterine fibroids, advocating for syndrome differentiation and treatment. The TCM methods that regulate Qi and blood and balance Yin and Yang have been commonly adopted, with significant efficacy and minimal side effects, being more conducive to the recovery. Guizhi Fulingwan are first recorded in the Synopsis of the Golden Chamber written by the famous medical expert ZHANG Zhongjing during the Eastern Han dynasty. This prescription has the effects of activating blood, resolving stasis, and eliminating mass, and it is thus mainly used for treating abdominal mass in women. In recent years, Guizhi Fulingwan has also been applied in the clinical treatment of tumors and has demonstrated definite efficacy in the treatment of uterine fibroids. Studies have shown that the therapeutic mechanisms of Guizhi Fulingwan for uterine fibroids involve regulating cell proliferation and apoptosis, improving immune function, reducing inflammation, improving hemorheological indicators, inhibiting tumor angiogenesis, and regulating sex hormone levels. This article mainly reviews the treatment of uterine fibroids with Guizhi Fulingwan from three aspects: theoretical basis, clinical application, and pharmacological mechanism. It is expected to provide scientific research ideas and guidance for exploring the clinical treatment of uterine fibroids.
5.Relationship between traumatic infectious endophthalmitis and the levels of serum macrophage inflammatory protein 1α, heat shock protein 70, and soluble triggering receptor expressed on myeloid cells 1
Ruihong WANG ; Linlin ZHANG ; Yanna WANG ; Junxia REN ; Cuiying LIU
International Eye Science 2026;26(1):119-124
AIM: To investigate the distribution characteristics of pathogens in patients with post-traumatic infectious endophthalmitis(PTIE)and their relationship with serum levels of macrophage inflammatory protein 1α(MIP-1α), heat shock protein 70(HSP70), and soluble triggering receptor expressed on myeloid cells 1(sTREM-1).METHODS:A total of 157 patients with PTIE from the Handan City Eye Hospital(The Third Hospital of Handan)from May 2023 to May 2025 were selected as the study group. They were divided into a good prognosis group and a poor prognosis group based on their uncorrected visual acuity at discharge. Meanwhile, 157 patients with ocular trauma but without endophthalmitis during the same period were selected as control group 1, and 157 healthy volunteers who underwent physical examinations during the same period were selected as control group 2. Aqueous humor and vitreous fluid samples were collected from the study group to detect the distribution of pathogens. The levels of serum MIP-1α, HSP70, and sTREM-1 were measured using the enzyme-linked immunosorbent assay. Multivariate Logistic regression analysis was performed to identify risk factors for poor prognosis. The predictive value of serum MIP-1α, HSP70, and sTREM-1 levels for poor prognosis was evaluated using receiver operating characteristic(ROC)and decision curve analysis(DCA).RESULTS: The general data of the participants in the three groups was comparable. A total of 173 pathogens were detected in the 157 patients with PTIE, with Gram-positive bacteria being the predominant type. The levels of serum MIP-1α and sTREM-1 in the study group were higher than those in control groups 1 and 2, while the level of HSP70 was lower than those in control groups 1 and 2(all P<0.05). There were no significant differences in the levels of serum MIP-1α, HSP70, and sTREM-1 between control groups 1 and 2(all P>0.05). In the poor prognosis group, the time of wound suture was ≥24 h, the wound location was in zones II/III, the type of trauma was rupture, the proportion of rupture injuries, and the levels of serum C-reactive protein, MIP-1α, and sTREM-1 were higher than those in the good prognosis group, while the level of HSP70 was decreased(all P<0.001). Multivariate Logistic regression analysis showed that the time of wound suture, wound location, type of trauma, C-reactive protein, MIP-1α, HSP70, and sTREM-1 were risk factors for poor visual prognosis in patients with PTIE(all P<0.05). The ROC curve results showed that the combined prediction of serum MIP-1α, HSP70, and sTREM-1 for poor visual prognosis in PTIE patients had an AUC value of 0.965, which was significantly higher than that of individual predictions(ZMIP-1α, ZHSP70, ZsTREM-1=3.628, 4.705, 3.930, all P<0.05). Additionally, the DCA curve showed that the combined prediction had a higher net benefit rate than individual predictions in the high-risk threshold range of 0.03-0.97.CONCLUSION:Gram-positive bacteria are the predominant type of pathogenic bacteria in patients with PTIE, with elevated levels of serum MIP-1α and sTREM-1 and decreased levels of HSP70. The combined detection of these three factors has a high predictive efficacy for visual prognosis in patients.
6.Influencing factors of stereoscopic function reconstruction after intermittent exotropia surgery and construction of a nomogram prediction model
Jinping PENG ; Shuqing ZHANG ; Jing LIU
International Eye Science 2026;26(1):129-134
AIM: To investigate the influencing factors of stereoscopic function reconstruction after intermittent exotropia(IXT)surgery and the construction of a nomogram prediction model.METHODS:A total of 204 patients with IXT(all underwent strabismus correction surgery)admitted to our hospital from September 2021 to October 2023 were randomly divided into modeling group(143 cases)and validation group(61 cases). The patients in the modeling group were further divided into reconstructive group and non-reconstructive group according to whether they had stereoscopic function reconstruction after surgery; the general patient information was collected; Multivariate Logistic regression analysis was performed on the influencing factors of stereoscopic visual function reconstruction after IXT surgery. The nomogram model was constructed using R software. The ROC curve was drawn to evaluate the distinction of the nomogram model. The decision curve analysis(DCA)was used to evaluate the clinical application value of the model.RESULTS:Reconstruction occurred in 50.5%(103 cases)of the 204 patients, and reconstruction occurred in 50.3%(72 cases)of the 143 patients in the modeling group. There were differences in age of onset, course of disease and postoperative horizontal strabismus between the reconstructive group and the non-reconstructive group(all P<0.05). Multivariate Logistic regression analysis showed that age of onset and postoperative horizontal strabismus were risk factors for stereoscopic visual function reconstruction after IXT surgery(all P<0.05), and the course of disease was a protective factor(P<0.05). The AUC of the modeling group was 0.892, and the H-L test was χ2=6.654 and P=0.615. The AUC of the validation group was 0.935, and the H-L test was χ2=6.498 and P=0.642. The DCA curve showed that the clinical value of the nomogram model was higher when the probability was 0.09-0.95.CONCLUSION: The age of onset, course of disease and postoperative amount of horizontal strabismus are the influencing factors of stereoscopic visual function reconstruction after IXT surgery, and the nomogram model constructed by this can better predict postoperative stereoscopic function reconstruction.
7.Banxia Xiexin Tang Ameliorates Cognitive Dysfunction in Rat Model of Vascular Dementia via AGE/RAGE Pathway
Shuzhi LIANG ; Zhongmin ZHAO ; Suyu HOU ; Dandan LUO ; Yan ZHANG ; Xijian LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):10-21
ObjectiveTo explore the mechanism by which Banxia Xiexin Tang (BXT) regulates the advanced glycation end products (AGE)/receptor for advanced glycation end products (RAGE) signaling pathway to reduce neuroinflammatory responses and ameliorate cognitive dysfunction in the rat model of vascular dementia (VD). MethodsThe components of BXT were detected by ultra performance liquid chromatography-quadrupole -orbitrap-tandem mass spectrometry(UPLC-Q-Orbitrap-MS/MS), and the core components and key action pathways were screened out by network pharmacology and molecular docking. Sixty SPF-grade male SD rats were randomly allocated into the sham and modeling groups by the random number table method. The VD model was replicated by the modified bilateral occlusion of the common carotid arteries (2-VO) method. The successfully modeled rats were randomly allocated into the model, low-, medium-, and high-dose (3.748 5, 7.497, 14.994 g·kg-1) BXT (BXT-L, BXT-M, and BXT-H), and nimodipine (NMP, 0.002 7 g·kg-1) groups according to the random number table method. The rats in the drug intervention groups were administrated with corresponding drugs by gavage, and the sham and model groups received the same amount of normal saline for 14 consecutive days. The Morris water maze, Y-maze, and new object recognition experiments were conducted to evaluate the cognitive dysfunction of rats. Hematoxylin-eosin (HE) staining was used to evaluate the histopathological changes of the hippocampal tissue in rats. The mRNA levels of AGE, RAGE, and phosphorylated nuclear factor-kappa B p65 (p-NF-κB p65) in the hippocampal tissue of rats were determined by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The expression of related proteins in the AGE/RAGE pathway in the hippocampal tissue of rats was determined by Western blot and immunohistochemistry (IHC). The levels of neurotransmitters and inflammatory mediators in the rat serum were measured by enzyme-linked immunosorbent assay (ELISA). ResultsThe chemical components of BXT were detected by UPLC-Q-Orbitrap-MS/MS. Network pharmacology and molecular docking identified the AGE/RAGE pathway as the key pathway. The results of the water maze, Y maze, and novel object recognition tests showed that compared with the sham group, the model group demonstrated prolonged successful latency and decreases in number of platform crossings, alternation rate, number of entries into the new arm, preference index, and discrimination index (P0.01). Compared with the model group, the BXT-H and BXT-M groups showed shortened successful latency (P0.01) and increases in number of platform crossings (P0.05), alternation rate (P0.01), number of entries into the new arm (P0.05), preference index (P0.01), and discrimination index (P0.01). HE results showed that compared with the sham group, the cells of model rats were loosely and disorderly arranged, and the nuclei were condensed. Compared with the model group, the pathological changes of the hippocampus in the BXT group were mitigated. Real-time PCR results showed that compared with the sham group, the model group presented up-regulated mRNA levels of AGE, RAGE, and p-NF-κB p65 in the hippocampus (P0.01), and compared with the model group, the BXT-H and BXT-M groups showcased down-regulated mRNA levels of AGE, RAGE, and p-NF-κB p65 (P0.01). Western blot results showed that compared with the sham group, the model group presented up-regulated expression of AGE, RAGE, p-NF-κB p65, and tumor necrosis factor-α (TNF-α) (P0.05), and compared with the model group, the BXT-H group presented down-regulated expression of AGE, RAGE, p-NF-κB p65, and TNF-α (P0.05). IHC results showed that compared with the sham group, the model group had increased expression of RAGE (P0.01), and compared with the model group, the BXT-H and BXT-M groups had reduced expression of RAGE (P0.01). ELISA results showed that compared with the sham group, the model group exhibited elevated levels of TNF-α and Interleukin-1β (IL-1β) and declined levels of acetylcholine (ACh) and dopamine (DA) in the serum (P0.01). Compared with the model group, the BXT-L, BXT-M, and BXT-H groups showed lowered levels of TNF-α and IL-1β in the serum (P0.05) and elevated levels of ACh and DA (P0.05). ConclusionBXT may ameliorate cognitive dysfunction in the rat model of VD by down-regulating the AGE/RAGE signaling pathway, reducing neuroinflammatory responses, and regulating neurotransmitter levels.
8.Mechanisms of Sini San in Regulation of Gut Microbiota Against Depression and Liver Injury in CUMS Rats
Junling LI ; Yan ZHANG ; Lei WANG ; Fang QI ; Zhenzhen CHEN ; Tianxing CHEN ; Yuhang LIU ; Xueying WANG ; Xianwen TANG ; Yubo LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):33-40
ObjectiveTo explore the efficacy and mechanisms of Sini San in the treatment of depression and liver injury based on gut microbiota. MethodsThirty-two male Sprague-Dawley (SD) rats were randomly divided into a normal group, model group (M), Sini San group (MS, 2.5 g·kg-1), and fluoxetine group (MF, 2 mg·kg-1). Except for the normal group, rats in the other three groups were subjected to chronic unpredictable mild stress (CUMS). After 8 weeks, the open-field test and sucrose preference test were conducted. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum corticosterone (CORT), adrenocorticotropic hormone (ACTH), corticotropin-releasing factor (CRF), lipopolysaccharide (LPS), Zonulin, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), γ-aminobutyric acid (GABA) levels in the hippocampus and prefrontal cortex, and brain-derived neurotrophic factor (BDNF) levels in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect hippocampal BDNF mRNA expression. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured using the ultraviolet lactate dehydrogenase method. The ultrastructure of the intestinal epithelium was observed by electron microscopy, and gut microbiota in rat feces were analyzed using 16S rDNA high-throughput sequencing. ResultsCompared with the normal group, the sucrose preference of rats in the model group was significantly reduced (P0.01), whereas it was significantly increased in the Sini San group compared with the model group (P0.05). Compared with the normal group, hippocampal GABA protein levels and BDNF mRNA expression in the model group were significantly decreased (P0.05), and compared with the model group, both were significantly increased in the Sini San group (P0.05, P0.01). Compared with the normal group, serum LPS and Zonulin levels in the model group were significantly increased (P0.05, P0.01), and compared with the model group, Zonulin levels in the Sini San group were significantly decreased (P0.05). No obvious changes were observed in the ultrastructure of the jejunal mucosa among groups. Compared with the normal group, widened and blurred tight junctions, sparse and shortened microvilli, and mitochondrial swelling with cristae disruption in epithelial cells were observed in the ileal and colonic mucosa of the model group, which were markedly improved in the Sini San and fluoxetine groups. The results of 16S rDNA high-throughput sequencing showed that Sini San improved CUMS-induced dysbiosis of Bacteroidetes and Proteobacteria. Correlation analysis indicated that Bacteroidetes and Proteobacteria were significantly correlated with depression-related indicators, liver function, and intestinal mucosal permeability. ConclusionSini San exerts antidepressant and hepatoprotective effects by improving Bacteroidetes and Proteobacteria and inhibiting the increase in intestinal mucosal permeability in CUMS rats.
9.Protective Effect and Mechanisms of Taohong Siwutang Against Retinal Vasculitis Based on JAK2/STAT3 Signaling Pathway
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):49-56
ObjectiveBased on the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway, this study explores the protective effect and mechanism of Taohong Siwutang against retinal vasculitis (RV) from the perspective of angiogenesis. MethodsSPF-grade C57BL/6J mice were used to establish a RV model induced by experimental autoimmune uveitis (EAU), and the protective effect of Taohong Siwutang on RV was investigated. Fifty mice were randomly assigned to a blank group, model group, and low-, medium-, and high-dose Taohong Siwutang groups (3.315、6.63、13.26 g·kg-1,10 mice in each group). After modeling, gavage administration was performed for 20 consecutive days. A small-animal retinal imaging system and fluorescein sodium angiography were used to observe pathological changes in the retinal tissue and vessels. Hematoxylin-eosin (HE) staining was used to assess retinal histopathological changes. Immunohistochemistry was performed to evaluate CD31-positive expression. Western blot was used to detect the protein expression levels of JAK2, phosphorylated (p)-JAK2, STAT3, p-STAT3, and vascular endothelial growth factor receptor 2 (VEGFR2) in retinal tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to determine the relative expression level of VEGFR2 mRNA in retinal vessels. ResultsCompared with the blank group, the model group showed relative optic disc swelling, multiple areas of inflammatory cell infiltration around retinal veins with partial vascular occlusion, vessel thickening and morphological alterations, uneven retinal thickness, wrinkling and bending of inner and outer layers, vascular dilation, and disordered cellular arrangement. Compared with the model group, the Taohong Siwutang groups showed markedly reduced CD31-positive expression and effectively improved perivascular inflammatory infiltration, vascular tortuous dilation, angiogenesis, vascular occlusion, and hemorrhage. Western blot results showed that compared with the model group, the expression of VEGFR2 and the phosphorylation levels of JAK2 and STAT3 were significantly decreased in the Taohong Siwutang groups (P0.01). Real-time PCR results indicated that VEGFR2 mRNA expression was significantly decreased in the Taohong Siwutang groups compared with the model group (P0.05). ConclusionTaohong Siwutang can effectively alleviate angiogenesis in RV and, through the JAK2/STAT3 signaling pathway, reduce angiogenesis and improve retinal pathological injury, thereby exerting a protective effect on retinal vessels.
10.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.

Result Analysis
Print
Save
E-mail