1.Mechanism of Guihuang Formula in Regulating NLRP3 Inflammasome-mediated Pyroptosis in Treatment of Chronic Prostatitis
Qinghe GAO ; Jianhua FU ; Shengjing LIU ; Ziwei ZHAO ; Ming ZHAO ; Boda GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):108-116
ObjectiveTo observe the mechanism of Guihuang formula in regulating the activation of NOD-like receptor protein 3 (NLRP3) inflammasome and inhibiting pyroptosis in the treatment of type Ⅲ prostatitis. Methods(1) In an animal experiment, 50 Sprague Dawley (SD) rats were randomly divided into a blank group, a model group, and low-dose, medium-dose, and high-dose groups of Guihuang formula, with 10 rats in each group. Except for the blank group, the type Ⅲ prostatitis rat model was prepared for the other four groups.After the modeling was successful, the blank group and the model group were given normal saline intragastrically, and the low-dose, medium-dose, and high-dose groups of Guihuang formula were given intragastrically with Guihuang formula (4.9, 9.8, 19.6 g·kg-1). After 30 days of intragastrical administration, samples were taken for detection. Inflammatory cell infiltration in prostate tissue was observed by hematoxylin-eosin (HE) staining, and serum IL-1β and IL-18 levels were measured by enzyme-linked immunosorbent assay (ELISA). Serum malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels were determined by biochemistry. NLRP3 expression in prostate tissue was assessed by immunohistochemistry, and the expression of NLRP3, cysteine-aspartic acid protease-1 (Caspase-1), and gasdermin D (GSDMD) in prostate tissue was measured by Western blot. (2) In a cell experiment, human normal prostate epithelial cells (RWPE-1 cells) were divided into a blank group, a model group, a Guihuang formula group, and an NLRP3 inhibitor group (MCC950 group). Except for the blank group, the other three groups were stimulated by 100 μg·L-1 lipopolysaccharide (LPS) for 4 h and 5 mol·L-1 adenosine triphosphate (ATP) for 30 min to prepare the pyroptosis model. After successful modeling, blank serum was given to the blank group and the model group. 6.25 μg·mL-1 Guihuang formula drug-containing serum was added to the Guihuang formula group, and MCC950 was added to the MCC950 group on the basis of the model group. Propidium iodide (PI) uptake and Caspase-1 expression were detected by flow cytometry, and lactate dehydrogenase (LDH) level in the cell supernatant was measured by biochemistry. Interleukin (IL)-1β and IL-18 levels of the cell supernatant were determined by ELISA, and the expression of NLRP3, Caspase-1, and GSDMD was detected in Western blot. Results(1) For the animal experiment, compared with the blank group, the model group showed significant infiltration of inflammatory cells in prostate tissue, while the low-dose, medium-dose, and high-dose groups of Guihuang formula showed reduced infiltration of acinar inflammatory cells, reduced degree of glandular epithelial degeneration and interstitial edema, and significantly reduced degree of damage. Compared with those in the blank group, the levels of IL-1β and IL-18 in the serum of the model group were significantly increased (P<0.01). Compared with the model group, the low-dose, medium-dose, and high-dose groups of Guihuang formula showed a significant decrease in serum IL-1β and IL-18 levels (P<0.01). Compared with that in the blank group, the serum MDA level in the model group significantly increased (P<0.01). Compared with that in the model group, the MDA level in the low-dose, medium-dose, and high-dose groups of Guihuang formula was significantly reduced (P<0.01). Compared with those in the blank group, the levels of SOD and GSH-Px in the serum of the model group significantly decreased (P<0.05). Compared with the model group, the low-dose, medium-dose, and high-dose groups of Guihuang formula showed a significantly increase in SOD (P<0.01). Compared with the model group, the low-dose, medium-dose, and high-dose groups of Guihuang formula showed a significantly increase in GSH-Px (P<0.05). Immunohistochemistry showed that compared with the blank group, the model group had high expression of NLRP3 molecule in prostate tissue. The expression of NLRP3 in the low-dose, medium-dose, and high-dose groups of Guihuang formula was significantly lower than that in the model group. Compared with those in the blank group, the expression levels of NLRP3, Caspase-1, and GSDMD proteins in the prostate tissue of the model group were significantly increased (P<0.01). Compared with those in the model group, the expression levels of NLRP3, Caspase-1, and GSDMD proteins in the low-dose, medium-dose, and high-dose groups of Guihuang formula were significantly inhibited (P<0.01). (2) For the cell experiment, compared with that in the blank group, the PI uptake rate of RWPE-1 cells in the model group significantly increased (P<0.01). Compared with that in the model group, the PI uptake rate of the Guihuang formula group and the inhibitor group significantly decreased (P<0.01). Compared with that in the blank group, the expression of Caspase-1 in the model group was significantly higher (P<0.01). Compared with that in the model group, the Caspase-1 in the Guihuang formula group and the inhibitor group significantly decreased (P<0.01). Compared with the blank group, the model group showed an increase in LDH release (P<0.01). Compared with the model group, the Guihuang formula group and the inhibitor group showed a significantly decrease in LDH release (P<0.01). Compared with those in the blank group, the levels of IL-1β and IL-18 in the supernatant of the model group were significantly increased (P<0.01). Compared with the model group, the Guihuang formula group and the inhibitor group showed a significantly decrease in the levels of IL-1β and IL-18 (P<0.01). Compared with those in the blank group, the expression levels of NLRP3, Caspase-1, and GSDMD proteins significantly increased in the model group (P<0.01). Compared with those in the model group, the protein expression levels of NLRP3, Caspase-1, and GSDMD were significantly reduced in the Guihuang formula group and inhibitor group (P<0.01). ConclusionGuihuang formula can inhibit the activation of Caspase-1, prevent GSDMD cleavation and lysis, and inhibit cell pyrodeath in the treatment of type Ⅲ prostatitis by inhibiting the activation of NLRP3 inflammasome.
2.Research progress on imaging examinations of macular hole
Luxuan WANG ; Xiuhua LIU ; Lei GAO ; Lifeng LIU
International Eye Science 2026;26(1):63-66
Macular hole is an age-related disorder defined by a full-thickness defect of the foveal retina and a profound loss of central vision. First described in the mid-19th century, its study has now extended across more than 150 years. Breakthroughs in science and technology—especially the relentless refinement of retinal imaging platforms—have progressively refined our understanding of the disease. Optical coherence tomography(OCT)in particular has revolutionized characterization of the condition. At the same time, the widespread adoption of macular hole surgery has not only driven deeper investigations into pathogenesis and pre-operative assessment but also facilitated the global dissemination of surgical expertise and a marked rise in anatomical success. This review synthesizes the multimodal imaging hallmarks of macular holes and highlights the remaining clinical challenges in the application of OCT technology.
3.Analysis of the current situation of poor vision and wearing of glasses among junior high school students in Xi'an City
Hui GAO ; Jiaqi WANG ; Zhirong LIU ; Jiateng WANG ; Lu YE
International Eye Science 2026;26(1):174-178
AIM:To investigate the prevalence of visual impairment and its correction status among junior high school students in Xi'an, so as to provide evidence for the development of targeted myopia prevention and control strategies.METHODS: A stratified cluster sampling design was adopted. From March to May 2025, students in grades 7-9 were recruited from three schools in Xi'an, Shaanxi Province, China: Dongfang Middle School, the Middle School Attached to Xi'an University of Technology, and the Xingqing Campus of the High School Affiliated to Xi'an Jiaotong University. In total, 3 974 students were invited, including 1 726 in grade 7, 1 206 in grade 8, and 1 042 in grade 9. The visual acuity was measured monocularly using a 5 m standard logarithmic visual acuity chart, with the fellow eye occluded; the line corresponding to the smallest optotype that could be correctly identified was recorded as the visual acuity value. Non-cycloplegic autorefraction was performed with a desktop autorefractor to obtain spherical equivalent(SE)values for refractive error screening.RESULTS: This study initially included 3 974 students, of whom 32 did not participate in the vision test, resulting in 3 942 students being included in the final analysis. Among them, 3 067(77.80%)were identified with poor vision. The prevalence of myopia was 81.47%(1 746)in males and 87.55%(1 575)in females(P<0.01). A stratified analysis by grade showed myopia rates of 81.72%(1 386)in junior grade one, 84.47%(1 017)in junior grade two, and 88.10%(918)in junior grade three, demonstrating a significant upward trend with increasing grade level(χ2=19.8484, P<0.01). Among the 3 321 myopic students, 2 287 adopted corrective measures. The rates of full correction, under-correction, and non-correction among all myopic students were 48.15%(1 599), 20.71%(688), and 31.14%(1 034), respectively. The rate of non-correction was significantly higher in male students than in females(32.70% vs 29.40%, χ2=4.2222, P<0.05).CONCLUSION: The findings indicate a high prevalence of visual impairment among junior high school students in Xi'an, coupled with suboptimal spectacle-wearing and full-correction rates. There is an urgent need for collaborative efforts across society, schools, and families to implement effective interventions to slow the onset and progression of myopia in this population.
4.Exploration in Mechanism of Sini San for Inhibiting Ferroptosis and Ameliorating Isoprenaline-induced Myocardial Infarction in Mice Based on Bioinformatics and Experimental Validation
Shupeng LIU ; Zhiguang HAN ; Jiaying LI ; Jiayao XU ; Weihao GAO ; Yanping WU ; Guangguo BAN ; Yongmin LI ; Hongxia YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):67-77
ObjectiveTo explore the mechanism by which Sini San (SNS) inhibits ferroptosis, alleviates inflammation and myocardial injury, and improves myocardial infarction (MI). MethodsThe active ingredients of SNS were obtained by searching the Traditional Chinese Medicine System Pharmacology Platform (TCMSP) database, its target sites were predicted using the SwissTargetPrediction Database, and the core components were screened out using the CytoNCA plug-in. The targets of MI and ferroptosis were obtained by using GeneCards, Online Mendelian Inheritance in Man (OMIM) database, DrugBank, Therapeutic Target Database (TTD), FerrDb database and literature review, respectively. The intersection of these targets of SNS-MI-ferroptosis was plotted as a Venn diagram. The protein-protein interaction (PPI) network was constructed using the STRING database, and the visualization graph was prepared using Cytoscape. The core targets were screened out using the CytoNCA plug-in, and the biological functions were clustered by the MCODE plug-in. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the David database. Molecular docking was performed using AutoDock and visualized with PyMOL2.5.2. The Kunming mice were randomly divided into the control group, the model group, the SNS group, and the trimetazidine (TMZ) group. The mice were subcutaneously injected with isoprenaline (ISO, 5 mg·kg-1·d-1) to establish an MI model. The drug was continuously intervened for 7 days. The ST-segment changes were recorded by electrocardiogram (ECG), and the tissue morphology changes were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte ferroptosis was investigated by transmission electron microscopy. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA) levels were detected by biochemical assay. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of interleukin (IL)-6 and 4-hydroxynonenal (4-HNE). Immunohistochemical staining was employed to detect IL-6 and phosphorylated signal transducer and transcription activator 3 (p-STAT3) in cardiac tissues. Western blot was used to detect STAT3 and p-STAT3 in cardiac tissues. Real-time PCR was used to detect the levels of IL-6, IL-18, solute carrier family 7 member 11 (SLC7A11), arachidonic acid 15-lipoxygenase (ALOX15), and glutathione peroxidase 4 (GPx4) in cardiac tissues. ResultsA total of 121 active ingredients of SNS were obtained, and 58 potential targets of SNS in the treatment of MI by regulating ferroptosis were screened. The three protein modules with a score5 were mainly related to the inflammatory response. The GO function was mainly related to inflammation, and KEGG enrichment analysis showed that SNS mainly regulated ferroptosis- and inflammation- related signaling pathways. Molecular docking indicated that the core component had a higher binding force to the target site. Animal experiments confirmed that SNS reduced the level of p-STAT3 (P0.01), down-regulated the expression of ALOX15 mRNA (P0.01), up-regulated the level of serum GSH, and the expressions of SLC7A11 and GPx4 mRNA, reduced MDA and 4-HNE levels (P0.05, P0.01). Additionally, SNS improved the mitochondrial injury induced by cardiomyocyte ferroptosis, reduced the area of MI, alleviated inflammation and myocardial injury, lowered the levels of serum CK, CK-MB, LDH, IL-6, and the mRNA expression levels of IL-16 and IL-18 (P0.05), and improved ST segment elevation. ConclusionSNS can reduce ISO-induced STAT3 phosphorylation levels, inhibit ferroptosis in cardiomyocytes, alleviate inflammation and myocardial injury, thereby improving MI.
5.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
6.Traditional Chinese Medicine Against Insomnia by Regulating PI3K/Akt Signaling Pathway: A Review
Suyu HOU ; Dandan LUO ; Xiangye GAO ; Yan ZHANG ; Xijian LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):284-293
Insomnia is a sleep disorder characterized by difficulty in falling asleep, sleep maintenance disorder and impaired daytime function. Its pathological mechanism involves multiple factors such as nerve excitability, circadian rhythm, cell apoptosis, oxidative stress injury. As a classical tyrosine kinase signaling pathway, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) triggers Akt phosphorylation cascade, inducing inflammatory response, apoptosis, autophagy, oxidative damage, nerve excitability, and circadian rhythm imbalance. Traditional Chinese medicine(TCM) can improve sleep by targeting the PI3K/Akt pathway. Based on this, this paper systematically reviews the research progress on the regulation of PI3K/Akt pathway by traditional Chinese medicine(TCM) for insomnia at home and abroad. These drugs can regulate neuronal excitability by regulating the PI3K/Akt pathway, affect the circadian rhythm, alleviate inflammation, apoptosis, autophagy and oxidative stress, and thus regulate sleep-wake. Furthermore, literature review indicates that the PI3K/Akt signaling pathway may represent a specific pathway underlying phlegm-turbidity disturbing the upper Jiao-type insomnia.
7.Exploration in Mechanism of Sini San for Inhibiting Ferroptosis and Ameliorating Isoprenaline-induced Myocardial Infarction in Mice Based on Bioinformatics and Experimental Validation
Shupeng LIU ; Zhiguang HAN ; Jiaying LI ; Jiayao XU ; Weihao GAO ; Yanping WU ; Guangguo BAN ; Yongmin LI ; Hongxia YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):67-77
ObjectiveTo explore the mechanism by which Sini San (SNS) inhibits ferroptosis, alleviates inflammation and myocardial injury, and improves myocardial infarction (MI). MethodsThe active ingredients of SNS were obtained by searching the Traditional Chinese Medicine System Pharmacology Platform (TCMSP) database, its target sites were predicted using the SwissTargetPrediction Database, and the core components were screened out using the CytoNCA plug-in. The targets of MI and ferroptosis were obtained by using GeneCards, Online Mendelian Inheritance in Man (OMIM) database, DrugBank, Therapeutic Target Database (TTD), FerrDb database and literature review, respectively. The intersection of these targets of SNS-MI-ferroptosis was plotted as a Venn diagram. The protein-protein interaction (PPI) network was constructed using the STRING database, and the visualization graph was prepared using Cytoscape. The core targets were screened out using the CytoNCA plug-in, and the biological functions were clustered by the MCODE plug-in. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the David database. Molecular docking was performed using AutoDock and visualized with PyMOL2.5.2. The Kunming mice were randomly divided into the control group, the model group, the SNS group, and the trimetazidine (TMZ) group. The mice were subcutaneously injected with isoprenaline (ISO, 5 mg·kg-1·d-1) to establish an MI model. The drug was continuously intervened for 7 days. The ST-segment changes were recorded by electrocardiogram (ECG), and the tissue morphology changes were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte ferroptosis was investigated by transmission electron microscopy. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA) levels were detected by biochemical assay. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of interleukin (IL)-6 and 4-hydroxynonenal (4-HNE). Immunohistochemical staining was employed to detect IL-6 and phosphorylated signal transducer and transcription activator 3 (p-STAT3) in cardiac tissues. Western blot was used to detect STAT3 and p-STAT3 in cardiac tissues. Real-time PCR was used to detect the levels of IL-6, IL-18, solute carrier family 7 member 11 (SLC7A11), arachidonic acid 15-lipoxygenase (ALOX15), and glutathione peroxidase 4 (GPx4) in cardiac tissues. ResultsA total of 121 active ingredients of SNS were obtained, and 58 potential targets of SNS in the treatment of MI by regulating ferroptosis were screened. The three protein modules with a score5 were mainly related to the inflammatory response. The GO function was mainly related to inflammation, and KEGG enrichment analysis showed that SNS mainly regulated ferroptosis- and inflammation- related signaling pathways. Molecular docking indicated that the core component had a higher binding force to the target site. Animal experiments confirmed that SNS reduced the level of p-STAT3 (P0.01), down-regulated the expression of ALOX15 mRNA (P0.01), up-regulated the level of serum GSH, and the expressions of SLC7A11 and GPx4 mRNA, reduced MDA and 4-HNE levels (P0.05, P0.01). Additionally, SNS improved the mitochondrial injury induced by cardiomyocyte ferroptosis, reduced the area of MI, alleviated inflammation and myocardial injury, lowered the levels of serum CK, CK-MB, LDH, IL-6, and the mRNA expression levels of IL-16 and IL-18 (P0.05), and improved ST segment elevation. ConclusionSNS can reduce ISO-induced STAT3 phosphorylation levels, inhibit ferroptosis in cardiomyocytes, alleviate inflammation and myocardial injury, thereby improving MI.
8.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
9.Traditional Chinese Medicine Against Insomnia by Regulating PI3K/Akt Signaling Pathway: A Review
Suyu HOU ; Dandan LUO ; Xiangye GAO ; Yan ZHANG ; Xijian LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):284-293
Insomnia is a sleep disorder characterized by difficulty in falling asleep, sleep maintenance disorder and impaired daytime function. Its pathological mechanism involves multiple factors such as nerve excitability, circadian rhythm, cell apoptosis, oxidative stress injury. As a classical tyrosine kinase signaling pathway, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) triggers Akt phosphorylation cascade, inducing inflammatory response, apoptosis, autophagy, oxidative damage, nerve excitability, and circadian rhythm imbalance. Traditional Chinese medicine(TCM) can improve sleep by targeting the PI3K/Akt pathway. Based on this, this paper systematically reviews the research progress on the regulation of PI3K/Akt pathway by traditional Chinese medicine(TCM) for insomnia at home and abroad. These drugs can regulate neuronal excitability by regulating the PI3K/Akt pathway, affect the circadian rhythm, alleviate inflammation, apoptosis, autophagy and oxidative stress, and thus regulate sleep-wake. Furthermore, literature review indicates that the PI3K/Akt signaling pathway may represent a specific pathway underlying phlegm-turbidity disturbing the upper Jiao-type insomnia.
10.Rapid health technology assessment of deucravacitinib in the treatment of moderate-to-severe plaque psoriasis
Xing GAO ; Shujing KONG ; Tianya LIU ; Xinran QIU ; Jia HAN
China Pharmacy 2026;37(1):111-116
OBJECTIVE To evaluate the efficacy, safety and cost-effectiveness of deucravacitinib in the treatment of moderate- to-severe plaque psoriasis. METHODS Rapid health technology assessment (HTA) reports, systematic reviews (SR)/meta- analyses, and pharmacoeconomic studies on deucravacitinib for the treatment of moderate-to-severe plaque psoriasis were identified by searching PubMed, Web of Science, Embase, CNKI, Wanfang data and official HTA websites. The search time frame spanned from database inception to July 2025. After literature screening, data extraction, and quality assessment, the study results were subjected to descriptive analysis and synthesis. RESULTS A total of 14 articles were finally included, consisting of 1 HTA report, 10 SR/meta-analyses, and 3 pharmacoeconomic studies. Regarding efficacy, deucravacitinib demonstrated superior efficacy to both placebo and apremilast, with significantly higher response rates for Psoriasis Area and Severity Index 50/75/90/100, Static Physician’ s Global Assessment 0/1, and Dermatology Life Quality Index 0/1, as well as greater reduction in Psoriasis Symptoms and Signs Diary Score (P<0.05). Regarding safety, deucravacitinib was well-tolerated. Although the overall incidence of adverse events (AEs) was higher than placebo, it was not significantly different from apremilast. Moreover, the incidence of serious AEs and the rate of discontinuation due to AEs did not differ significantly from placebo (P>0.05). Regarding cost-effectiveness, deucravacitinib proved to be more cost-effective than apremilast across multiple healthcare system perspectives, including those of the United States, Japan, and China. CONCLUSIONS Deucravacitinib exhibits favorable efficacy, safety, and cost-effectiveness in the treatment of moderate-to-severe plaque psoriasis. Additional real-world studies are warranted to further refine its evaluation.

Result Analysis
Print
Save
E-mail