1.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
2.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Coronary artery stenosis associated with right ventricular dysfunction in acute pulmonary embolism: A case-control study.
Yuejiao MA ; Jieling MA ; Dan LU ; Yinjian YANG ; Chao LIU ; Liting WANG ; Xijie ZHU ; Xianmei LI ; Chunyan CHENG ; Sijin ZHANG ; Jiayong QIU ; Jinghui LI ; Mengyi LIU ; Kai SUN ; Xin JIANG ; Xiqi XU ; Zhi-Cheng JING
Chinese Medical Journal 2025;138(16):2028-2036
BACKGROUND:
The potential impact of pre-existing coronary artery stenosis (CAS) on right ventricular (RV) function during acute pulmonary embolism (PE) episodes remains underexplored. This study aimed to investigate the association between pre-existing CAS and RV dysfunction in patients with acute PE.
METHODS:
In this multicenter, case-control study, 89 cases and 176 controls matched for age were enrolled at three study centers (Peking Union Medical College Hospital, Fuwai Hospital, and the Second Affiliated Hospital of Harbin Medical University) from January 2016 to December 2020. The cases were patients with acute PE with CAS, and the controls were patients with acute PE without CAS. Coronary artery assessment was performed using coronary computed tomographic angiography. CAS was defined as ≥50% stenosis of the lumen diameter in any coronary vessel >2.0 mm in diameter. Conditional logistic regression analysis was used to evaluate the association between CAS and RV dysfunction.
RESULTS:
The percentages of RV dysfunction (19.1% [17/89] vs. 44.6% [78/176], P <0.001) and elevated systolic pulmonary artery pressure (sPAP) (19.3% [17/89] vs. 39.5% [68/176], P = 0.001) were significantly lower in the case group than those in the control group. In the multivariable logistic regression model, CAS was independently and negatively associated with RV dysfunction (adjusted odds ratio [OR]: 0.367; 95% confidence interval [CI]: 0.185-0.728; P = 0.004), and elevated sPAP (OR: 0.490; 95% CI: 0.252-0.980; P = 0.035), respectively.
CONCLUSIONS
Pre-existing CAS was significantly and negatively associated with RV dysfunction and elevated sPAP in patients with acute PE. This finding provides new insights into RV dysfunction in patients with acute PE with pre-existing CAS.
Humans
;
Pulmonary Embolism/complications*
;
Case-Control Studies
;
Male
;
Ventricular Dysfunction, Right/physiopathology*
;
Female
;
Middle Aged
;
Aged
;
Coronary Stenosis/complications*
;
Logistic Models
;
Adult
7.Isolation, identification, and degradation characterization of a polyethylene plastic-degrading bacterial strain.
Yuwei WANG ; Liting ZHANG ; Min XU ; Zhongli CUI ; Hui CAO
Chinese Journal of Biotechnology 2025;41(6):2405-2414
Polyethylene (PE) is widely used due to its excellent properties. However, the improper disposal of PE waste has led to serious environmental pollution. Microbial degradation of PE is a low-carbon, environmentally friendly, and highly efficient method of homogeneous recycling. The use of microbial degradation technology to treat polyethylene waste has become one of the current research hotspots. As a result, employing microbial degradation technology to address polyethylene waste has become a key focus of current research. A PE-degrading strain ETX1 was screened from waste plastics in a landfill by the enrichment culture method. The strain was identified as Lysinibacillus sp.. After incubating PE powder with the strain for 20 days, a weight loss of 29.41% was observed. Fourier transform infrared spectroscopy (FTIR) showed that special absorption peaks such as carbonyl and hydroxyl groups appeared, proving that ETX1 had the effect of degrading PE. The degradation effect of this strain was characterized by the weight loss of PE film, FTIR, scanning electron microscopy, and contact angle. The results showed that ETX1 reduced the PE film weight by up to 5.23% within 120 days. The film structure was damaged, with holes formed by erosion on the film surface, and the hydrophilicity was enhanced. Additionally, a stronger carbonyl absorption peak appeared. The discovery of the PE-degrading strain ETX1 not only enriches the resources of PE plastic-degrading strains but also lays a foundation for mining efficient PE-degrading elements, obtaining degrading enzymes, and deciphering related degradation pathways.
Polyethylene/chemistry*
;
Biodegradation, Environmental
;
Spectroscopy, Fourier Transform Infrared
;
Bacillaceae/classification*
;
Plastics/metabolism*
8.Genetically predicted waist circumference and risk of atrial fibrillation
Wenting WANG ; Jiang-Shan TAN ; Jingyang WANG ; Wei XU ; Liting BAI ; Yu JIN ; Peng GAO ; Peiyao ZHANG ; Yixuan LI ; Yanmin YANG ; Jinping LIU
Chinese Medical Journal 2024;137(1):82-86
Introduction::Observational studies have revealed an association between waist circumference (WC) and atrial fibrillation (AF). However, it is difficult to infer a causal relationship from observational studies because the observed associations could be confounded by unknown risk factors. Therefore, the causal role of WC in AF is unclear. This study was designed to investigate the causal association between WC and AF using a two-sample Mendelian randomization (MR) analysis.Methods::In our two-sample MR analysis, the genetic variation used as an instrumental variable for MR was acquired from a genome-wide association study (GWAS) of WC (42 single nucleotide polymorphisms with a genetic significance of P <5 × 10 –8). The data of WC (from the Genetic Investigation of ANthropometric Traits consortium, containing 232,101 participants) and the data of AF (from the European Bioinformatics Institute database, containing 55,114 AF cases and 482,295 controls) were used to assess the causal role of WC on AF. Three different approaches (inverse variance weighted [IVW], MR–Egger, and weighted median regression) were used to ensure that our results more reliable. Results::All three MR analyses provided evidence of a positive causal association between high WC and AF. High WC was suggested to increase the risk of AF based on the IVW method (odds ratio [OR] = 1.43, 95% confidence interval [CI], 1.30–1.58, P = 2.51 × 10 -13). The results of MR–Egger and weighted median regression exhibited similar trends (MR–Egger OR = 1.40 [95% CI, 1.08–1.81], P = 1.61 × 10 -2; weighted median OR = 1.39 [95% CI, 1.21–1.61], P = 1.62 × 10 -6). MR–Egger intercepts and funnel plots showed no directional pleiotropic effects between high WC and AF. Conclusions::Our findings suggest that greater WC is associated with an increased risk of AF. Taking measures to reduce WC may help prevent the occurrence of AF.
9.Research progress on GSDME-mediated cell pyroptosis resulting in GSDME type hearing loss
Liting PENG ; Xi WANG ; Weiqian WANG ; Jincao XU ; Xue GAO
Chinese Journal of Medical Genetics 2024;41(10):1271-1276
Pyroptosis is a novel mode for programmed cell death discovered and confirmed in recent years. The Gasdermins (GSDMs) family is a key effector molecule mediating pyroptosis. As an important cause of extensive inflammatory damage and side effects of conventional chemotherapy drugs, anomalous pyroptosis has also been associated with hearing loss, tumor, and disorders of the immune system. The GSDME protein, encoded by the GSDME ( DFNA5) gene, belongs to the GSDMs family and is a key factor mediating pyroptosis. Gain-of-function variants of the GSDME gene can lead to GSDME-related hearing loss, which shows an autosomal dominant inheritance. This article has reviewed the role of GSDME-mediated pyroptosis in the pathogenesis of GSDME-related hearing loss, with an aim to provide insights into the treatment of GSDME-related hearing loss.
10.Association between coronary artery stenosis and myocardial injury in patients with acute pulmonary embolism: A case-control study
Yinjian YANG ; Chao LIU ; Jieling MA ; Xijie ZHU ; Jingsi MA ; Dan LU ; Xinxin YAN ; Xuan GAO ; Jia WANG ; Liting WANG ; Sijin ZHANG ; Xianmei LI ; Bingxiang WU ; Kai SUN ; Yimin MAO ; Xiqi XU ; Tianyu LIAN ; Chunyan CHENG ; Zhicheng JING
Chinese Medical Journal 2024;137(16):1965-1972
Background::The potential impact of pre-existing coronary artery stenosis (CAS) on acute pulmonary embolism (PE) episodes remains underexplored. This study aimed to investigate the association between pre-existing CAS and the elevation of high-sensitivity cardiac troponin I (hs-cTnI) levels in patients with PE.Methods::In this multicenter, prospective case-control study, 88 cases and 163 controls matched for age, sex, and study center were enrolled. Cases were patients with PE with elevated hs-cTnI. Controls were patients with PE with normal hs-cTnI. Coronary artery assessment utilized coronary computed tomographic angiography or invasive coronary angiography. CAS was defined as ≥50% stenosis of the lumen diameter in any coronary vessel >2.0 mm in diameter. Conditional logistic regression was used to evaluate the association between CAS and hs-cTnI elevation.Results::The percentage of CAS was higher in the case group compared to the control group (44.3% [39/88] vs. 30.1% [49/163]; P = 0.024). In multivariable conditional logistic regression model 1, CAS (adjusted odds ratio [OR], 2.680; 95% confidence interval [CI], 1.243–5.779), heart rate >75 beats/min (OR, 2.306; 95% CI, 1.056–5.036) and N-terminal pro-B type natriuretic peptide (NT-proBNP) >420 pg/mL (OR, 12.169; 95% CI, 4.792–30.900) were independently associated with elevated hs-cTnI. In model 2, right CAS (OR, 3.615; 95% CI, 1.467–8.909) and NT-proBNP >420 pg/mL (OR, 13.890; 95% CI, 5.288–36.484) were independently associated with elevated hs-cTnI. Conclusions::CAS was independently associated with myocardial injury in patients with PE. Vigilance towards CAS is warranted in patients with PE with elevated cardiac troponin levels.

Result Analysis
Print
Save
E-mail