1.Mechanism of salidroside in inhibiting expression of adhesion molecules in oxLDL-induced endothelial cells by regulating ferroptosis mediated by SIRT1/Nrf2.
Meng ZHANG ; Min XIAO ; Jing-Jing LI ; Jiang-Feng LI ; Guang-Hui FAN
China Journal of Chinese Materia Medica 2025;50(10):2787-2797
This article investigated the effect and mechanism of salidroside(SAL) on the expression of adhesion molecules in oxidized low-density lipoprotein(oxLDL)-induced mouse aortic endothelial cell(MAEC). The oxLDL-induced endothelial cell injury model was constructed, and the safe concentration and action time of SAL were screened. The cells were divided into control group, oxLDL group, low and high concentration groups of SAL, and ferrostatin-1(Fer-1) group. The cell viability was detected by CCK-8 assay; lactate dehydrogenase(LDH) leakage was measured by colorimetry; the expression of intercellular adhesion molecule 1(ICAM-1) and recombinant vascular cell adhesion molecule 1(VCAM-1) were detected by immunofluorescence; Fe~(2+),glutathione(GSH),malondialdehyde(MDA),and 4-hydroxynonenal(4-HNE) levels were detected by kit method; reactive oxygen species(ROS) was detected by DCFH-DA probe; the levels of glutathione peroxidase 4(GPX4),silent mating type information regulation 2 homolog 1(SIRT1), and nuclear factor erythroid 2-related factor 2(Nrf2) were determined by using Western blot. The inhibitors of Nrf2 and SIRT1 were used, and endothelial cell were divided into control group, oxLDL group, SAL group, ML385 group(Nrf2 inhibitor), and EX527 group(SIRT1 inhibitor). The ultrastructure of mitochondria was observed by electron microscope; mitochondrial membrane potential(MMP) was detected by flowcytometry; the expressions of SIRT1,Nrf2,solute carrier family 7 member 11(SLC7A11),GPX4,ferroportin 1(FPN1),ferritin heavy chain 1(FTH1),ICAM-1, and VCAM-1 were detected by Western blot. The results showed that similar to Fer-1,low and high concentrations of SAL could improve cell viability, inhibit LDH release and the expression of ICAM-1 and VCAM-1 in oxLDL-induced endothelial cells(P<0.05 or P<0.01). It was related to increase in GSH level, decrease in Fe~(2+),ROS,MDA, and 4-HNE level, and up-regulation of SIRT1,Nrf2, and GPX4 expression to inhibit ferroptosis(P<0.05 or P<0.01). The intervention effect of high concentration SAL was the most significant. ML385 and EX527 could partially offset the protection of SAL on mitochondrial structure and MMP and reverse the ability of SAL to up-regulate the expression of SIRT1,Nrf2,SLC7A11,GPX4,FPN1, and FTH1 and down-regulate the expression of ICAM-1 and VCAM-1(P<0.05 or P<0.01).To sum up, SAL could reduce the expression of ICAM-1 and VCAM-1 in oxLDL-induced endothelial cell, which may relate to activation of SLC7A11/GPX4 antioxidant signaling pathway mediated by SITR1/Nrf2, up-regulation of FPN1 and FTH1 expression, and inhibition of ferroptosis.
Sirtuin 1/genetics*
;
Animals
;
Ferroptosis/drug effects*
;
Lipoproteins, LDL/metabolism*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Endothelial Cells/cytology*
;
Glucosides/pharmacology*
;
Phenols/pharmacology*
;
Cell Adhesion Molecules/genetics*
;
Reactive Oxygen Species/metabolism*
;
Intercellular Adhesion Molecule-1/genetics*
;
Vascular Cell Adhesion Molecule-1/genetics*
;
Cell Survival/drug effects*
2.mTOR promotes oxLDL-induced vascular smooth muscle cell ferroptosis by inhibiting autophagy.
Yi LI ; Lijun ZHANG ; Yuke ZHANG ; Qi ZHANG ; Lijun ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):687-694
Objective To explore the role and mechanism of mammalian target of rapamycin (mTOR) in oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in vascular smooth muscle cells (VSMCs). Methods A model of oxLDL-induced VSMC ferroptosis was established. VSMCs were co-treated with either the mTOR inhibitor rapamycin or the autophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP), followed by detection of autophagy and ferroptosis-related indexes. Quantitative real-time PCR and Western blot were used respectively to analyze the expression of mTOR, glutathione peroxidase 4 (GPX4), sequestosome 1 (p62), and microtubule-associated protein 1 light chain 3 (LC3). Flow cytometry was employed to assess VSMC death. C11 BODIPY fluorescent staining was used to measure cellular lipid peroxidation levels. Colorimetric assays were performed to determine the contents of malondialdehyde (MDA), ferrous ion (Fe2+) and glutathione (GSH). Results oxLDL significantly upregulated mTOR expression in VSMCs, while increasing p62 expression and reducing LC3 expression, thereby suppressing VSMC autophagy. Compared with oxLDL treatment alone, rapamycin co-treatment reversed oxLDL-induced VSMC ferroptosis, as characterized by reduced VSMC death, increased GPX4 expression and GSH contents, along with decreased MDA content, Fe2+ content and lipid peroxidation levels. Similarly, CCCP co-treatment activated autophagy characterized by reduced p62 expression and elevated LC3 expression, which subsequently alleviated oxLDL-induced ferroptosis, showing reduced VSMC death, increased GPX4 expressions and GSH contents, and decreased MDA content, Fe2+ content and lipid peroxidation levels. Moreover, mTOR inhibition by rapamycin significantly reversed the oxLDL-induced upregulation of p62 and downregulation of LC3. Conclusion mTOR may promote oxLDL-induced VSMC ferroptosis by suppressing autophagy.
Ferroptosis/drug effects*
;
Lipoproteins, LDL/metabolism*
;
TOR Serine-Threonine Kinases/physiology*
;
Autophagy/drug effects*
;
Muscle, Smooth, Vascular/metabolism*
;
Animals
;
Rats
;
Myocytes, Smooth Muscle/cytology*
;
Cells, Cultured
;
Lipid Peroxidation/drug effects*
;
Sequestosome-1 Protein/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism*
;
Microtubule-Associated Proteins/genetics*
;
Sirolimus/pharmacology*
3.Berberine inhibits macrophage foam cell formation through activation of ACE2-Ang(1-7)-Mas signaling pathway.
Qin ZHANG ; Songhao HU ; Junxia YANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):978-984
Objective This study aims to investigate the effect of berberine (Ber) on foam cell formation induced by oxidized low-density lipoprotein (ox-LDL) in macrophages and to explore the mechanism's association with the ACE2-Ang(1-7)-Mas axis. Methods They were randomly divided into blank group, model group (RAW264.7 cells induced with 60 μg/mL ox-LDL), and berberine group (the model treated with berberine interventions at 2.5, 5, and 10 μmol/L concentrations). Lipid accumulation within the cells was assessed by Oil Red O staining, and the content of lipid droplets in each group was quantitatively analyzed by enzymatic method. The content of total cholesterol (TC) and free cholesterol (FC) in foam cells were detected by enzymatic method. The levels of oxidative stress factors (malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH)), inflammatory factors such as tumor necrosis factor α(TNF-α), and nitric oxide (NO) were measured using corresponding relevant reagent kits. The mRNA and protein expressions of ACE2 and Mas were evaluated through quantitative real-time PCR and Western blot analysis, respectively. The levels of AngII and Ang(1-7) were detected by ELISA. Results Compared with the model group, the berberine groups exhibited reduced lipid droplet accumulation and a dose-dependent decrease in intracellular lipid content. Berberine significantly lowered TC and FC levels in foam cells and reduced the CE/TC ratio. The levels of the oxidative factor MDA were significantly reduced, while the levels of the antioxidant factors SOD and GSH were markedly increased. Inflammatory factors TNF-α and NO were significantly decreased. The expression of the ACE2-Ang(1-7)-Mas signaling pathway was significantly activated, and the effect was more pronounced in the Ber group with high-concentration compared to the group with low-concentration, demonstrating a dose-dependent response. Conclusion Berberine can inhibit macrophage foam cell formation, potentially through upregulation of the ACE2-Ang(1-7)-Mas signaling pathway, thereby contributing to the alleviation of atherosclerosis.
Berberine/pharmacology*
;
Foam Cells/cytology*
;
Animals
;
Signal Transduction/drug effects*
;
Mice
;
Angiotensin-Converting Enzyme 2
;
Angiotensin I/genetics*
;
Peptidyl-Dipeptidase A/genetics*
;
Peptide Fragments/genetics*
;
Receptors, G-Protein-Coupled/genetics*
;
RAW 264.7 Cells
;
Proto-Oncogene Proteins/genetics*
;
Proto-Oncogene Mas
;
Lipoproteins, LDL/pharmacology*
;
Nitric Oxide/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
4.Mechanism of chrysophanol in inhibiting ox-LDL-induced macrophage foaminess through NF-κB/HMGB1-PI3K/Akt/mTOR pathway.
Chun-Lin WU ; Ya-Nan HU ; Yi-Qiang LIU ; Hui LI ; Quan WEN
China Journal of Chinese Materia Medica 2024;49(23):6439-6449
The aim of this study was to investigate the underlying mechanism of chrysophanol(Chr) in reducing inflammation and foam cell formation induced by oxidized low-density lipoprotein(ox-LDL) and to investigate the targets and pathways related to effects of Chr on coronary atherosclerosis, providing a theoretical basis for the development of new clinical drugs. RAW264.7 macrophages were cultured in vitro, and after determining the appropriate concentrations of Chr and ox-LDL for treating RAW264.7 macrophages using a cell counting kit-8(CCK-8), the macrophages were treated with different concentrations of Chr(10, 15 μmol·L~(-1)) and ox-LDL(with or without 80 mg·mL~(-1)) for 24 h. RAW264.7 macrophages were divided into four groups: control group, model group(80 mg·mL~(-1) ox-LDL), treatment group(80 mg·mL~(-1) ox-LDL+10 μmol·L~(-1) Chr), and treatment group(80 mg·mL~(-1) ox-LDL+15 μmol·L~(-1) Chr). Lipid accumulation in each group was detected by oil red O staining. CD36 expression was analyzed by flow cytometry. Western blot was used to detect the expression of scavenger receptor class A1(SR-A1), scavenger receptor class B type Ⅰ(SR-B1), autophagy-related protein 5(Atg5), Beclin-1, autophagy adaptor protein p62(P62), the ratio of microtubule-associated protein light chain 3(LC3)Ⅱ to LC3Ⅰ(LC3Ⅱ/LC3Ⅰ), nuclear factor kappa B P65(NF-κB P65), inhibitor of κB kinase β(IKKβ), nuclear factor of κB inhibitor(IκB), high mobility group box protein 1(HMGB1), phosphatidylinositol 3-kinase(PI3K), protein kinase B(Akt), and phosphorylated mammalian target of rapamycin(mTOR). Real-time quantitative polymerase chain reaction(RT-qPCR) was used to detect the mRNA expression levels of ATP-binding cassette transporter A1(ABCA1), ATP-binding cassette transporter G1(ABCG1), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), HMGB1, inducible nitric oxide synthase(iNOS), arginase 1(Arg1), macrophage galactose-type lectin-1(Mgl-1), and NF-κB P65. Immunofluorescence analysis was performed to determine the localization of HMGB1 in RAW264.7 cells in each group. The autophagy inhibitor 3-methyladenine(3-MA) was added as a control for reverse validation, and the RAW264.7 macrophages were divided into four groups again: control group, model group(80 mg·mL~(-1) ox-LDL), treatment group(80 mg·mL~(-1) ox-LDL + 15 μmol·L~(-1) Chr), and inhibitor group(80 mg·mL~(-1) ox-LDL+15 μmol·L~(-1) Chr+3-MA). The results showed that Chr effectively reduced foam cell formation by regulating the expression levels of SR-A1, ABCA1, ABCG1, the LC3Ⅱ/LC3Ⅰ ratio, Atg5, Beclin-1, and p62, and inhibited the NF-κB/HMGB1-PI3K/Akt/mTOR signaling pathway. Moreover, the inhibitory effects of Chr on autophagy and the NF-κB/HMGB1-PI3K/Akt/mTOR pathway were reversed by the autophagy inhibitor 3-MA. In conclusion, Chr exhibits therapeutic potential for the treatment of atherosclerosis by inducing autophagy and modulating the NF-κB/HMGB1 and PI3K/Akt/mTOR pathways to inhibit the formation of macrophage inflammatory foam cells.
Animals
;
Lipoproteins, LDL/metabolism*
;
Mice
;
TOR Serine-Threonine Kinases/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Macrophages/cytology*
;
RAW 264.7 Cells
;
Proto-Oncogene Proteins c-akt/genetics*
;
Signal Transduction/drug effects*
;
NF-kappa B/genetics*
;
Anthraquinones/pharmacology*
;
Foam Cells/cytology*
;
HMGB1 Protein/genetics*
;
Humans
5.miR-509-3p promotes oxidized low-density lipoprotein-induced apoptosis in mouse aortic endothelial cells.
Rui ZHANG ; Yanqiu SONG ; Fumei ZHAO ; Ting LIU ; Hongliang CONG ; Hui ZHAO
Chinese Critical Care Medicine 2023;35(12):1291-1297
OBJECTIVE:
To investigate the effect of microRNA-509-3p (miR-509-3p) on the apoptosis of atherosclerotic vascular endothelial cells.
METHODS:
Mouse aortic endothelial cells (MAECs) were divided into normal control group, oxidized low-density lipoprotein (ox-LDL) group, miR-509-3p overexpression group, miR-509-3p overexpression control group, miR-509-3p inhibitor + ox-LDL group, and miR-509-3p inhibitor control + ox-LDL group. MAEC were induced with 100 mg/L ox-LDL for 24 hours, and then transfected with miR-509-3p overexpression/inhibitor and corresponding control for 48 hours. The miR-509-3p expression in MAECs exposed to ox-LDL was detected using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). Flow cytometry was used to detect the level of apoptosis, and cell counting kit (CCK-8) was used to detect the proliferation activity of MAECs. The direct gene targets of miR-509-3p were predicted using bioinformatics analyses and confirmed using a dual luciferase reporter assay. The expression of Bcl-2 mRNA and protein was detected by RT-qPCR and Western blotting, respectively.
RESULTS:
Compared with the normal control group, miR-509-3p was significantly upregulated in ox-LDL-stimulated MAECs (1.68±0.85 vs. 1.00±0.30, t = 2.398, P < 0.05). After transfection of MAECs with miR-509-3p overexpression, the luciferase activity of the BCL2 3'UTR WT reporter gene was significantly lower than that of miR-509-3p overexpression control group (0.83±0.06 vs. 1.00±0.07, t = 4.531, P = 0.001). The luciferase activity of the BCL2 3'-UTR mutant (MUT) reporter gene was not significantly different from that of miR-509-3p overexpression control group (0.94±0.05 vs. 1.00±0.08, t = 1.414, P = 0.188). Compared with the normal control group and miR-509-3p mimics control group, the cell proliferation activity was decreased [(0.60±0.06)% vs. (1.00±0.09)%, (0.89±0.04)%, both P < 0.01], the percentage of apoptotic cells were increased [(23.46±2.02)% vs. (7.66±1.52)%, (10.40±0.78)%, both P < 0.05], and the mRNA and protein expression of Bcl-2 were significantly downregulated (Bcl-2 mRNA: 0.52±0.13 vs. 1.00±0.36, 1.10±0.19, Bcl-2 protein: 0.42±0.07 vs. 1.00±0.11, 0.93±0.10, both P < 0.01) in miR-509-3p overexpression group. Compared with the ox-LDL group, inhibition of miR-509-3p expression could increase the proliferation activity of MAECs induced by ox-LDL [(0.64±0.35)% vs. (0.34±0.20%)%, P < 0.05], and reduce the apoptosis rate [(13.59±2.22)% vs. (29.84±5.19)%, P < 0.01], and up-regulated the expression of Bcl-2 mRNA and protein in MAECs induced by ox-LDL (Bcl-2 mRNA relative expression: 0.82±0.09 vs. 0.52±0.10, Bcl-2 protein relative expression: 0.83±0.17 vs. 0.40±0.07, both P < 0.05).
CONCLUSIONS
Bcl-2 was one of the target genes of miR-509-3p. miR-509-3p can reduce the proliferation activity of endothelial cells, reduce the expression of Bcl-2, and promote cell apoptosis, thereby promoting the occurrence and development of atherosclerosis. Inhibition of miR-509-3p expression may be a potential therapeutic target for atherosclerosis.
Animals
;
Mice
;
Humans
;
Endothelial Cells
;
MicroRNAs/metabolism*
;
Signal Transduction
;
Lipoproteins, LDL/metabolism*
;
Apoptosis
;
RNA, Messenger/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/pharmacology*
;
Atherosclerosis/metabolism*
;
Luciferases/pharmacology*
;
Cell Proliferation
;
Human Umbilical Vein Endothelial Cells
6.S-propargyl-cysteine delays the progression of atherosclerosis and increases eNOS phosphorylation in endothelial cells.
Zhi-Ming LI ; Ping LI ; Lei ZHU ; Yu-Wen ZHANG ; Yi-Chun ZHU ; He WANG ; Bo YU ; Ming-Jie WANG
Acta Physiologica Sinica 2023;75(3):317-327
The present study aimed to investigate the protective effect of S-propargyl-cysteine (SPRC) on atherosclerosis progression in mice. A mouse model of vulnerable atherosclerotic plaque was created in ApoE-/- mice by carotid artery tandem stenosis (TS) combined with a Western diet. Macrophotography, lipid profiles, and inflammatory markers were measured to evaluate the antiatherosclerotic effects of SPRC compared to atorvastatin as a control. Histopathological analysis was performed to assess the plaque stability. To explore the protective mechanism of SPRC, human umbilical vein endothelial cells (HUVECs) were cultured in vitro and challenged with oxidized low-density lipoprotein (ox-LDL). Cell viability was determined with a Cell Counting Kit-8 (CCK-8). Endothelial nitric oxide synthase (eNOS) phosphorylation and mRNA expression were detected by Western blot and RT-qPCR respectively. The results showed that the lesion area quantified by en face photographs of the aortic arch and carotid artery was significantly less, plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were reduced, plaque collagen content was increased and matrix metalloproteinase-9 (MMP-9) was decreased in 80 mg/kg per day SPRC-treated mice compared with model mice. These findings support the role of SPRC in plaque stabilization. In vitro studies revealed that 100 μmol/L SPRC increased the cell viability and the phosphorylation level of eNOS after ox-LDL challenge. These results suggest that SPRC delays the progression of atherosclerosis and enhances plaque stability. The protective effect may be at least partially related to the increased phosphorylation of eNOS in endothelial cells.
Animals
;
Humans
;
Mice
;
Atherosclerosis
;
Cholesterol/metabolism*
;
Cysteine/pharmacology*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Lipoproteins, LDL/pharmacology*
;
Nitric Oxide Synthase Type III/metabolism*
;
Phosphorylation
;
Plaque, Atherosclerotic/pathology*
7.Study on protective effect of total flavonoids from Rosa multiflora on HUVEC induced by ox-LDL.
Dan YANG ; Jun WANG ; Kai-Yan LI
China Journal of Chinese Materia Medica 2021;46(5):1211-1216
The aim of this paper was to study the protective effect of total flavonoids from Rosa multiflora(TF-RM) on the injury of HUVEC induced by oxidized low density lipoprotein(ox-LDL). SPF male SD rats were randomly divided into blank group, simvastatin group(1.8 mg·kg~(-1)·d~(-1)) and TF-RM group(2.5 g·kg~(-1)·d~(-1)), with 10 rats in each group. They were intragastrically administered with drugs for 7 days, and then blood was collected from the abdominal aorta to prepare drug-containing serum. The HUVEC injury model was established through ox-LDL induction, and added with 15% simvastatin, 5% TF-RM, 10% TF-RM, 15% TF-RM drug-containing serum and blank serum, respectively. Reactive oxygen species(ROS) was determined by flow cytometry. Nitric oxide(NO) content was determined by nitrate reductase method. The contents of ET-1, P-selectin, E-selectin, ICAM-1, VCAM-1, IL-1β, IL-6 and TNF-α were determined by ELISA. The expression of Lox-1 protein was determined by Western blot. Compared with the blank group, ROS level in HUVEC and the contents of ET-1, P-selectin, E-selectin, ICAM-1, VCAM-1 and IL-1β in HUVEC were significantly increased(P<0.05), NO decreased significantly(P<0.01),Lox-1 protein expression increased significantly(P<0.05), and TNF-α and IL-6 showed an increasing trend. Compared with the model group, TF-RM significantly reduced ROS level in HUVEC and ET-1, P-selectin, E-selectin, ICAM-1, TNF-α, IL-1β content in supernatant(P<0.05), significantly increased NO content(P<0.01), and inhibited Lox-1 protein expression(P<0.05). VCAM-1, IL-6 contents showed a decreasing trend. Serum containing TF-RM acts on lectin-like oxidized low-density lipoprotein receptors, and exerts a protective effect on vascular endothelial cells by reducing cell oxidative damage, regulating vasoactive substances, and reducing adhesion molecules and inflammatory cascades.
Animals
;
Cells, Cultured
;
Endothelial Cells
;
Endothelium, Vascular
;
Flavonoids/pharmacology*
;
Intercellular Adhesion Molecule-1/genetics*
;
Lipoproteins, LDL
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Rosa
8.Effects of Simvastatin on Diabetic Neuropathic Pain and Systematic Inflammation in Diabetic Rat Models and Their Molecular Mechanisms.
Xin ZHANG ; Le SHEN ; Yu Guang HUANG
Acta Academiae Medicinae Sinicae 2019;41(3):283-290
Objective To investigate the effects of simvastatin on diabetic neuropathic pain and systematic inflammation in diabetic rats and explore their molecular mechanisms.Methods Totally 24 rats were equally randomized into the normal+vehicle(NV)group,diabetic+vehicle(DV)group,and diabetic+simvastatin(DS)group using the random number table.Streptozotocin(STZ)was used to establish the rat models of diabetes.Blood glucose,body mass,paw withdrawal mechanical threshold(PWMT),and paw withdrawal thermal latency(PWTL)in each group were observed on days 7,14,21,and 28 after STZ injection.On day 28 after STZ injection,rats were sacrificed,and the lumbar spinal dorsal horn and serum were collected.Western blotting was used to detect the expression of receptor for advanced glycation end products(RAGE)and the phosphorylation levels of protein kinase B(AKT),extracellular signal-regulated kinase(ERK),p38,and c-Jun N-terminal kinase(JNK)in the spinal dorsal horn of rats in each group.Enzyme-linked immunosorbent assay was performed to determine the serum concentrations of oxidized low density lipoprotein(ox-LDL)and interleukin-1β(IL-1β).Results On days 14,21 and 28 after STZ injection,the PWMT in DV group were(8.6 ± 0.8),(7.1 ± 1.6),and(7.8 ± 0.8)g respectively,which were significantly lower than (12.0 ± 0.9)(=8.482, =0.000),(11.6 ± 1.5)(=11.309, =0.000),and(11.7 ± 1.5)g(=9.801, =0.000)in NV group.The PWMT in DS group on days 21 and 28 were(9.4 ± 1.4)(=5.780, =0.000)and(9.7 ± 0.9)g(=4.775, =0.003),respectively,which were significantly improved comparing with those of DV group.On days 7,14,21,and 28,there were no significant differences in PWTL among these three groups (all <0.05).The expression of RAGE in the spinal dorsal horn of DV group was significantly higher than those of NV group(=6.299, =0.000)and DS group(=2.891, =0.025).The phosphorylation level of AKT in the spinal dorsal horn of DV group was significantly higher than those of NV group(=8.915,=0.000)and DS group(=4.103,=0.003).The phosphorylation levels of ERK( =8.313,=0.000),p38( =2.965, =0.022),and JNK(=7.459, =0.000)in the spinal dorsal horn of DV group were significantly higher than those of NV group;the phosphorylation level of JNK in the spinal dorsal horn of DS group was significant lower than that of DV group(=3.866, =0.004);however,there were no significant differences in the phosphorylation levels of ERK(=1.987,=0.122)and p38(=1.260,=0.375)in the spinal dorsal horn between DS group and DV group.The serum concentrations of ox-LDL and IL-1β in DV group were(41.86 ± 13.40)ng/ml and(108.16 ± 25.88)pg/ml,respectively,which were significantly higher than those in NV group [(24.66 ± 7.87)ng/ml(=3.606,=0.003)and(49.32 ± 28.35)pg/ml(=5.079,=0.000)] and DS group [(18.81 ± 5.62)ng/ml (=4.833, =0.000)and(32.73 ± 11.73)pg/ml(=6.510, =0.000)].Conclusions Simvastatin can relieve the mechanical allodynia of diabetic rats possibly by inhibiting the activation of RAGE/AKT and the phosphorylation of JNK in the spinal dorsal horn.Simvastatin can also decrease the serum concentrations of ox-LDL and IL-1β in diabetic rats,which may contribute to the relief of systematic inflammation.
Animals
;
Diabetes Mellitus, Experimental
;
complications
;
Hyperalgesia
;
Inflammation
;
drug therapy
;
Interleukin-1beta
;
blood
;
Lipoproteins, LDL
;
blood
;
Neuralgia
;
drug therapy
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Receptor for Advanced Glycation End Products
;
metabolism
;
Simvastatin
;
pharmacology
9.Inhibitory Effects of Simvastatin on Oxidized Low-Density Lipoprotein-Induced Endoplasmic Reticulum Stress and Apoptosis in Vascular Endothelial Cells.
Guo-Qiang ZHANG ; Yong-Kang TAO ; Yong-Ping BAI ; Sheng-Tao YAN ; Shui-Ping ZHAO
Chinese Medical Journal 2018;131(8):950-955
BackgroundOxidized low-density lipoprotein (ox-LDL)-induced oxidative stress and endothelial apoptosis are essential for atherosclerosis. Our previous study has shown that ox-LDL-induced apoptosis is mediated by the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2α-subunit (eIF2α)/CCAAT/enhancer-binding protein homologous protein (CHOP) endoplasmic reticulum (ER) stress pathway in endothelial cells. Statins are cholesterol-lowering drugs that exert pleiotropic effects including suppression of oxidative stress. This study aimed to explore the roles of simvastatin on ox-LDL-induced ER stress and apoptosis in endothelial cells.
MethodsHuman umbilical vein endothelial cells (HUVECs) were treated with simvastatin (0.1, 0.5, or 2.5 μmol/L) or DEVD-CHO (selective inhibitor of caspase-3, 100 μmol/L) for 1 h before the addition of ox-LDL (100 μg/ml) and then incubated for 24 h, and untreated cells were used as a control group. Apoptosis, expression of PERK, phosphorylation of eIF2α, CHOP mRNA level, and caspase-3 activity were measured. Comparisons among multiple groups were performed with one-way analysis of variance (ANOVA) followed by post hoc pairwise comparisons using Tukey's tests. A value of P < 0.05 was considered statistically significant.
ResultsExposure of HUVECs to ox-LDL resulted in a significant increase in apoptosis (31.9% vs. 4.9%, P < 0.05). Simvastatin (0.1, 0.5, and 2.5 μmol/L) led to a suppression of ox-LDL-induced apoptosis (28.0%, 24.7%, and 13.8%, F = 15.039, all P < 0.05, compared with control group). Ox-LDL significantly increased the expression of PERK (499.5%, P < 0.05) and phosphorylation of eIF2α (451.6%, P < 0.05), if both of which in the control groups were considered as 100%. Simvastatin treatment (0.1, 0.5, and 2.5 μmol/L) blunted ox-LDL-induced expression of PERK (407.8%, 339.1%, and 187.5%, F = 10.121, all P < 0.05, compared with control group) and phosphorylation of eIF2α (407.8%, 339.1%, 187.5%, F = 11.430, all P < 0.05, compared with control group). In contrast, DEVD-CHO treatment had no significant effect on ox-LDL-induced expression of PERK (486.4%) and phosphorylation of eIF2α (418.8%). Exposure of HUVECs to ox-LDL also markedly induced caspase-3 activity together with increased CHOP mRNA level; these effects were inhibited by simvastatin treatment.
ConclusionsThis study suggested that simvastatin could inhibit ox-LDL-induced ER stress and apoptosis in vascular endothelial cells.
Apoptosis ; drug effects ; Cells, Cultured ; Endoplasmic Reticulum Stress ; drug effects ; Human Umbilical Vein Endothelial Cells ; drug effects ; metabolism ; Humans ; Lipoproteins, LDL ; pharmacology ; Oligopeptides ; pharmacology ; Simvastatin ; pharmacology
10.Chlorogenic acid inhibits non-enzymatic glycation and oxidation of low density lipoprotein.
Rui CAI ; Shuqing CHEN ; Shenhua JIANG
Journal of Zhejiang University. Medical sciences 2018;47(1):27-34
OBJECTIVE:
: To investigate the effect of chlorogenic acid (CGA) on non-enzymatic glycation and oxidation of low density lipoprotein (LDL).
METHODS:
: The non-enzymatic glycation incubation system of LDL-glucose was established. The contents of early glycation products (Amodori product) and intermediate products (dicarbonyl compound) were determined by ultraviolet-visible spectrophotometry, and the content of advanced glycation end products (AGEs) was determined by fluorescence spectrophotometry. The LDL oxidation incubation system was established. The contents of thiobarbituric acid reactive substances(TBARS) and conjugated diene were determined by ultraviolet-visible spectrophotometry. The tryptophan fluorescence quenching, and the content of lipofuscin, total fluorescence products, active aldehydes and malondialdehyde were determined by fluorescence spectrophotometry, and further verified by three-dimensional fluorescence spectroscopy.
RESULTS:
: In the LDL glycation experiment, 150 μg/mL and 300 μg/mL CGA inhibited the formation of Amadori product, dicarbonyl compounds and AGEs. In the LDL oxidation experiment, 15 μg/mL and 25 μg/mL CGA inhibited the formation of TBARS effectively; 5 μg/mL and 10 μg/mL CGA inhibited tryptophan fluorescence quenching, and the formation of active aldehydes, malondialdehyde, total fluorescence products, lipofuscin and conjugated diolefine. And the three-dimensional fluorescence spectroscopy showed the same results.
CONCLUSIONS
: CGA can inhibit non-enzymatic glycation and oxidation of LDL.
Chlorogenic Acid
;
pharmacology
;
Glycosylation
;
drug effects
;
Lipoproteins, LDL
;
metabolism
;
Oxidation-Reduction
;
drug effects
;
Thiobarbituric Acid Reactive Substances
;
analysis

Result Analysis
Print
Save
E-mail