1.Bear Bile Powder Ameliorates LPS-Induced Acute Lung Injury by Inhibiting CD14 Pathway and Improving Intestinal Flora: Exploration of "Fei (Lung)-Dachang (Large Intestine) Interaction" Theory.
Long CHENG ; Hui-Ling TIAN ; Hong-Yuan LEI ; Ying-Zhou WANG ; Ma-Jing JIAO ; Yun-Hui LIANG ; Zhi-Zheng WU ; Xu-Kun DENG ; Yong-Shen REN
Chinese journal of integrative medicine 2025;31(9):821-829
OBJECTIVE:
To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism.
METHODS:
The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 µL of Staphylococcus aureus solution (bacterial concentration of 1 × 10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 µL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α ) and IL-1β in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS).
RESULTS:
UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05).
CONCLUSIONS
BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.
Animals
;
Acute Lung Injury/pathology*
;
Lipopolysaccharides
;
Ursidae
;
Gastrointestinal Microbiome/drug effects*
;
Bile/chemistry*
;
Lipopolysaccharide Receptors/metabolism*
;
Powders
;
Male
;
Lung/drug effects*
;
Mice
;
Peroxidase/metabolism*
;
Signal Transduction/drug effects*
;
Cytokines/metabolism*
2.Tripterygium wilfordii attenuates acute lung injury by regulating the differentiation and function of myeloid-derived suppressor cells.
Lingyu WEI ; Shu TONG ; Meng'er WANG ; Hongzheng REN ; Jinsheng WANG
Journal of Central South University(Medical Sciences) 2025;50(5):840-850
OBJECTIVES:
Acute lung injury (ALI) is an acute respiratory failure syndrome characterized by impaired gas exchange. Due to the lack of effective targeted drugs, it is associated with high mortality and poor prognosis. Tripterygium wilfordii (TW) has demonstrated anti-inflammatory activity in the treatment of various diseases. This study aims to investigate the effects and underlying mechanisms of TW on myeloid-derived suppressor cells (MDSCs) in ALI, providing experimental evidence for TW as a potential adjuvant therapy for ALI.
METHODS:
Eighteen specific pathogen-free (SPF) C57BL/6 mice were randomly divided into normal control (NC; intranasal saline), lipopolysaccharide (LPS; 5 mg/kg intranasally to induce ALI), and LPS+TW (50 mg/kg TW by gavage on the first day of modeling, followed by 5 mg/kg LPS intranasally to induce ALI) groups (n=6 each). Lung injury and edema were assessed by histopathological scoring and wet-to-dry weight ratio. Cytokine levels [interleukin (IL)-1β, IL-6, IL-18, tumor necrosis factor-α (TNF-α)] in lung tissue lavage fluid were measured by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was used to assess the proportions of MDSCs, polymorphonuclear MDSCs (PMN-MDSCs), and monocytic MDSCs (M-MDSCs) in bone marrow, spleen, peripheral blood, and lung tissue, as well as reactive oxygen species (ROS) levels in lung tissues. Messenger RNA (mRNA) expression levels of inducible nitric oxide synthase (iNOS) and arginase-1 (ARG-1) in lung tissues were determined by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). PMN-MDSCs sorted from the lungs of LPS-treated mice were co-cultured with splenic CD3+ T cells and divided into NC, triptolide (TPL)-L, and TPL-H groups, with bovine serum albumin, 25 nmol/L TPL, and 50 nmol/L TPL, respectively. Flow cytometry was used to detect the effect of PMN-MDSCs on T-cell proliferation, and RT-qPCR was used to measure iNOS and ARG-1 mRNA expression.
RESULTS:
Compared with the NC group, the LPS group showed marked lung pathology with significantly increased histopathological scores and wet-to-dry ratios (both P<0.001). TW treatment significantly alleviated lung injury and reduced both indices compared with the LPS group (both P<0.05). Cytokine levels were significantly decreased in the LPS+TW group compared with the LPS group (all P<0.001). The proportions of MDSCs in CD45+ cells from spleen, bone marrow, peripheral blood, and lung, as well as PMN-MDSCs from spleen, peripheral blood, and lung, were significantly reduced in the LPS+TW group compared with the LPS group (all P<0.05), accompanied by reduced ROS levels in lung tissues (P<0.001). iNOS and ARG-1 mRNA expression in lung tissues was significantly lower in the LPS+TW group than in the LPS group (both P<0.001). In vitro, compared with the TPL-L group, the TPL-H group showed significantly increased CD3+ T-cell proliferation (P<0.001), and decreased iNOS and ARG-1 mRNA expression (all P<0.05).
CONCLUSIONS
TW alleviates the progression of LPS-induced ALI in mice, potentially by reducing the proportion of MDSCs in lung tissues and attenuating the immunosuppressive function of PMN-MDSCs.
Animals
;
Acute Lung Injury/chemically induced*
;
Myeloid-Derived Suppressor Cells/cytology*
;
Tripterygium/chemistry*
;
Mice, Inbred C57BL
;
Mice
;
Cell Differentiation/drug effects*
;
Male
;
Lipopolysaccharides
;
Nitric Oxide Synthase Type II/genetics*
;
Cytokines/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Diterpenes/pharmacology*
;
Epoxy Compounds
;
Phenanthrenes
3.NRF2 nuclear translocation and interaction with DUSP1 regulate the osteogenic differentiation of murine mandibular osteoblasts stimulated with Porphyromonas gingivalis lipopolysaccharide.
Xufei YU ; Jiaqi BAO ; Yingming WEI ; Yuting YANG ; Wenlin YUAN ; Lili CHEN ; Zhongxiu WANG
Journal of Zhejiang University. Science. B 2025;26(9):881-896
BACKGROUND: Periodontitis is characterized by alveolar bone resorption, aggravated by osteoblast dysfunction, and associated with intracellular oxidative stress linked to the nuclear factor erythroid 2-related factor 2 (NRF2) level. We evaluated the molecular mechanism of periodontitis onset and development and the role of NRF2 in osteogenic differentiation. METHODS: Primary murine mandibular osteoblasts were extracted and exposed to Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) or other stimuli. Reactive oxygen species (ROS) and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) staining were used to detect intracellular oxidative stress. Alkaline phosphatase staining and alizarin red S staining were used to detect the osteogenic differentiation of osteoblasts. Immunofluorescence and western blotting were used to determine the changes in the mitogen-activated protein kinase (MAPK) pathway and related molecule activities. Immunofluorescence colocalization and co-immunoprecipitation were performed to examine the nuclear translocation of NRF2 and its interaction with dual-specific phosphatase 1 (DUSP1) in cells. RESULTS: Ligated tissue samples showed higher alveolar bone resorption rate and lower NRF2 level than healthy periodontal tissue samples. Pg-LPS increased intracellular oxidative stress levels and inhibited osteogenic differentiation, whereas changes in NRF2 expression were correlated with changes in the oxidative stress and osteogenesis rate. NRF2 promoted the dephosphorylation of the MAPK pathway by nuclear translocation and the upregulation of DUSP1 expression, thus enhancing the osteogenic differentiation capacity of mandibular osteoblasts. The interaction between NRF2 and DUSP1 was observed. CONCLUSIONS: NRF2 and its nuclear translocation can regulate the osteogenic differentiation of mandibular osteoblasts under Pg-LPS conditions by interacting with DUSP1 in a process linked to the MAPK pathway. These findings form the basis of periodontitis treatment.
Animals
;
NF-E2-Related Factor 2/physiology*
;
Lipopolysaccharides/pharmacology*
;
Osteoblasts/drug effects*
;
Mice
;
Porphyromonas gingivalis/chemistry*
;
Cell Differentiation
;
Osteogenesis
;
Dual Specificity Phosphatase 1/metabolism*
;
Mandible/cytology*
;
Reactive Oxygen Species/metabolism*
;
Oxidative Stress
;
Periodontitis/metabolism*
;
Cells, Cultured
;
Male
;
Cell Nucleus/metabolism*
4.Ten new lignans with anti-inflammatory activities from the leaves of Illicium dunnianum.
Ting LI ; Xiaoqing HE ; Dabo PAN ; Xiaochun ZENG ; Siying ZENG ; Zhenzhong WANG ; Xinsheng YAO ; Wei XIAO ; Haibo LI ; Yang YU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):990-996
The anti-inflammatory phytochemical investigation of the leaves of Illicium dunnianum (I. dunnianum) resulted in the isolation of five pairs of new lignans (1-5), and 7 known analogs (6-12). The separation of enantiomer mixtures 1-5 to 1a/1b-5a/5b was achieved using a chiral column with acetonitrile-water mixtures as eluents. The planar structures of 1-2 were previously undescribed, and the chiral separation and absolute configurations of 3-5 were reported for the first time. Their structures were determined through comprehensive spectroscopic data analysis [nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass (HR-ESI-MS), infrared (IR), and ultraviolet (UV)] and quantum chemistry calculations (ECD). The new isolates were evaluated by measuring their inhibitory effect on NO in lipopolysaccharide (LPS)-stimulated BV-2 cells. Compounds 1a, 3a, 3b, and 5a demonstrated partial inhibition of NO production in a concentration-dependent manner. Western blot and real-time polymerase chain reaction (PCR) assays revealed that 1a down-regulated the messenger ribonucleic acid (mRNA) levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), COX-2, and iNOS and the protein expressions of COX-2 and iNOS. This research provides guidance and evidence for the further development and utilization of I. dunnianum.
Lignans/isolation & purification*
;
Plant Leaves/chemistry*
;
Anti-Inflammatory Agents/isolation & purification*
;
Mice
;
Animals
;
Molecular Structure
;
Plant Extracts/pharmacology*
;
Illicium/chemistry*
;
Cyclooxygenase 2/immunology*
;
Interleukin-6/immunology*
;
Nitric Oxide/metabolism*
;
Cell Line
;
Tumor Necrosis Factor-alpha/immunology*
;
Nitric Oxide Synthase Type II/immunology*
;
Lipopolysaccharides
5.Radix Sanguisorbae Improves Intestinal Barrier in Septic Rats via HIF-1 α/HO-1/Fe2+ Axis.
Yi-Yan LIU ; Dai-Qin BAO ; Zi-Sen ZHANG ; Yu ZHU ; Liang-Ming LIU ; Tao LI
Chinese journal of integrative medicine 2024;30(12):1101-1112
OBJECTIVE:
To investigate whether Radix Sanguisorbae (RS, Diyu) could restore intestinal barrier function following sepsis using a cecal ligation and puncture (CLP)-induced septic rat model and lipopolysaccharide (LPS)-challenged IEC-6 cell model, respectively.
METHODS:
Totally 224 rats were divided into 4 groups including a control, sham, CLP and RS group according to a random number table. The rats in the control group were administrated with Ringer's lactate solution (30 mL/kg) with additional dopamine [10 µ g/(kg·min)] and given intramuscular injections of cefuroxime sodium (10 mg/kg) 12 h following CLP. The rats in the RS group were administrated with RS (10 mg/kg) through tail vein 1 h before CLP and treated with RS (10 mg/kg) 12 h following CLP. The rats in the sham group were only performed abdominal surgery without CLP. The rats in the CLP group were performed with CLP without any treatment. The other steps were same as control group. The effects of RS on intestinal barrier function, mesenteric microvessels barrier function, multi-organ function indicators, inflammatory response and 72 h survival window following sepsis were observed. In vitro, the effects of RS on LPS-challenged IEC-6 cell viability, the expressions of zona occludens-1 (ZO-1) and ferroptosis index were evaluated by cell counting kit-8, immunofluorescence and Western blot analysis. Bioinformatic tools were applied to investigate the pharmacological network of RS in sepsis to predict the active compounds and potential protein targets and pathways.
RESULTS:
The sepsis caused severe intestinal barrier dysfunction, multi-organ injury, lipid peroxidation accumulation, and ferroptosis in vivo. RS treatment significantly prolonged the survival time to 56 h and increased 72-h survival rate to 7/16 (43.75%). RS also improved intestinal barrier function and relieved intestinal inflammation. Moreover, RS significantly decreased lipid peroxidation and inhibited ferroptosis (P<0.05 or P<0.01). Administration of RS significantly worked better than Ringer's solution used alone. Using network pharmacology prediction, we found that ferroptosis and hypoxia inducible factor-1 (HIF-1 α) signaling pathways might be involved in RS effects on sepsis. Subsequent Western blot, ferrous iron measurements, and FerroOrange fluorescence of ferrous iron verified the network pharmacology predictions.
CONCLUSION
RS improved the intestinal barrier function and alleviated intestinal injury by inhibiting ferroptosis, which was related in part to HIF-1 α/heme oxygenase-1/Fe2+ axis.
Animals
;
Sepsis/complications*
;
Male
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Sanguisorba/chemistry*
;
Intestinal Mucosa/metabolism*
;
Iron/metabolism*
;
Cell Line
;
Disease Models, Animal
;
Lipopolysaccharides
6.Anti-oxidant and Anti-inflammatory Effects of Ethanol Extract from Polygala sibirica L. var megalopha Fr. on Lipopolysaccharide-Stimulated RAW264.7 Cells.
Cheng-Liu YANG ; Shi-Bo WANG ; Wen-Ping HE ; Jin-Juan LIU
Chinese journal of integrative medicine 2023;29(10):905-913
OBJECTIVE:
To investigate the anti-oxidant and anti-inflammatory effects of ethanol extract of Polygala sibirica L. var megalopha Fr. (EEP) on RAW264.7 mouse macrophages.
METHODS:
RAW264.7 cells were pretreated with 0-200 µg/mL EEP or vehicle for 2 h prior to exposure to 1 µg/mL lipopolysaccharide (LPS) for 24 h. Nitric oxide (NO) and prostaglandin (PGE2) production were determined by Griess reagent and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor α (TNF-α), interleukin-1beta (IL-1β), and IL-6 were determined using reverse transcription polymerase chain reaction (RT-PCR). Western blot assay was used to determine the protein expressions of iNOS, COX-2, phosphorylation of extracellular regulated protein kinases (ERK1/2), c-Jun N-terminal kinase (JNK), inhibitory subunit of nuclear factor Kappa B alpha (Iκ B-α) and p38. Immunofluorescence was used to observe the nuclear expression of nuclear factor-κ B p65 (NF-κ B p65). Additionally, the anti-oxidant potential of EEP was evaluated by reactive oxygen species (ROS) production and the activities of catalase (CAT) and superoxide dismutase (SOD). The 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), superoxide anion (O2-) radical and nitrite scavenging activity were also measured.
RESULTS:
The total polyphenol and flavonoid contents of EEP were 23.50±2.16 mg gallic acid equivalent/100 g and 43.78±3.81 mg rutin equivalent/100 g. With EEP treatment (100 and 150 µg/mL), there was a notable decrease in NO and PGE2 production induced by LPS in RAW264.7 cells by downregulation of iNOS and COX-2 mRNA and protein expressions (P<0.01 or P<0.05). Furthermore, with EEP treatment (150 µg/mL), there was a decrease in the mRNA expression levels of TNF-α, IL-1β and IL-6, as well as in the phosphorylation of ERK, JNK and p38 mitogen-activated protein kinase (MAPK, P<0.01 or P<0.05), by blocking the nuclear translocation of NF-κ B p65 in LPS-stimulated cells. In addition, EEP (100 and 150 µg/mL) led to an increase in the anti-oxidant enzymes activity of SOD and CAT, with a concomitant decrease in ROS production (P<0.01 or P<0.05). EEP also indicated the DPPH, OH, O2- radical and nitrite scavenging activity.
CONCLUSION
EEP inhibited inflammatory responses in activated macrophages through blocking MAPK/NF-κ B pathway and protected against oxidative stress.
Animals
;
Mice
;
Antioxidants/pharmacology*
;
Lipopolysaccharides/pharmacology*
;
Polygala
;
Transcription Factor RelA/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ethanol/chemistry*
;
Interleukin-6/metabolism*
;
Anti-Inflammatory Agents/chemistry*
;
Reactive Oxygen Species/metabolism*
;
Cyclooxygenase 2/metabolism*
;
Nitrites/metabolism*
;
NF-kappa B/metabolism*
;
Nitric Oxide/metabolism*
;
Superoxide Dismutase/metabolism*
;
RNA, Messenger
;
Nitric Oxide Synthase Type II/metabolism*
7.Anti-osteoarthritis components and mechanism of Fufang Duzhong Jiangu Granules.
Zi-Jun CHEN ; Xiao-Qian HUO ; Yue REN ; Zhan SHU ; Yan-Ling ZHANG
China Journal of Chinese Materia Medica 2022;47(15):4156-4163
Osteoarthritis is a common disease characterized by degenerative lesions of articular cartilage in the elderly.Fufang Duzhong Jiangu Granulues(FDJG), a classical prescription for the treatment of osteoarthritis, has the effects of nourishing liver and kidney, nourishing blood and sinew, and dredging collaterals and relieving pain.In this study, molecular simulation technology was combined with molecular biology methods to explore and verify the potential pharmacodynamic substances and molecular mechanism of FDJG in the treatment of osteoarthritis.Arachidonic acid(AA) metabolic pathway is a typical anti-inflammatory pathway, and secretory phospholipase A2 group ⅡA(sPLA2-ⅡA), 5-lipoxygenase(5-LOX), cyclooxygenase-2(COX-2), and leukotriene A4 hydrolase(LTA4 H) are the key targets of the pathway.Therefore, in this study, based on the pharmacophores and molecular docking models of the four key targets in AA pathway, a total of 1 522 chemical components in 12 medicinals of FDJG were virtually screened, followed by weighted analysis of the screening results in combination with the proportions of the medicinals in the prescription.The results showed that mainly 73 components in the preparation could act on the above four targets, suggesting they might be the potential anti-osteoarthritis components of FDJG.Considering the predicted effectiveness, availability, and compatibility of the medicinals, coniferyl ferulate, olivil, and baicalin were selected for further verification.Specifically, lipopolysaccharide(LPS)-induced RAW264.7 inflammatory cell model was used to verify the anti-inflammatory activity of the three components.The results showed that the three can effectively inhibit the release of NO, supporting the above selection.In addition, targets 5-LOX, COX-2, and LTA4 H had high activity, which suggested that they may be the key anti-osteoarthritis targets of FDJG.The comprehensive activity values of Eucommiae Cortex, Achyranthis Bidentatae Radix, Ginseng Radix et Rhizoma, Lycii Fructus, and Astragali Radix were much higher than that of other medicinals in the prescription, indicating that they may be the main effective medicinals in FDJG acting on the AA pathway.In this study, the potential anti-osteoarthritis components of FDJG were obtained.Moreover, it was clarified that the anti-osteoarthritis mechanism of FDJG was to act on LOX and COX pathway in AA metabolic pathway, which provided a reference for the study of pharmacodynamic substances and molecular mechanism of FDJG.
Aged
;
Anti-Inflammatory Agents/therapeutic use*
;
Cyclooxygenase 2/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Leukotriene A4/analysis*
;
Lipopolysaccharides
;
Molecular Docking Simulation
;
Osteoarthritis/drug therapy*
;
Rhizome/chemistry*
8.Therapeutic effects of alkaloids in Tibetan medicine Bangna (Aconiti Penduli et Aconiti Flavi Radix) on osteoarthritis rats and mechanisms.
Qi WANG ; Jing PENG ; Yang LIU ; Yang TIAN ; Jie LI ; Yao-Yao REN ; Jian GU ; Rui TAN
China Journal of Chinese Materia Medica 2022;47(17):4715-4722
This study aims to investigate the therapeutic effects of alkaloids in Tibetan medicine Bangna(Aconiti Penduli et Aconiti Flavi Radix) on osteoarthritis(OA) rats in vitro and in vivo and the underlying mechanisms. Chondrocytes were isolated from 2-3 week-old male SD rats and lipopolysaccharide(LPS) was used to induce OA in chondrocytes in vitro. Methyl thiazolyl tetrazolium(MTT) assay was used to investigate the toxicity of seven alkaloids(12-epi-napelline, songorine, benzoylaconine, aconitine, 3-acetylaconitine, mesaconitine, and benzoylmesaconine) to chondrocytes. Chondrocytes were classified into the control group, model group(induced by LPS 5 μg·mL~(-1) for 12 h), and administration groups(induced by LPS 5 μg·mL~(-1) for 12 h and incubated for 24 h). The protein expression of inflammatory factors cyclooxygenase-2(COX-2), inducible nitric oxide synthetase(iNOS), tumor necrosis factor-α(TNF-α), and interleukin-1β(IL-1β) in each group were detected by Western blot, and the protein expression of matrix metalloprotease-13(MMP-13), aggrecan, collagen Ⅱ, fibroblast growth factor 2(FGF2) by immunofluorescence staining. For the in vivo experiment, sodium iodoacetate was used to induce OA in rats, and the expression of MMP-13, TNF-α, and FGF2 in cartilage tissues of rats in each group was detected by immunohistochemistry. The results showed that the viability of chondrocytes could reach more than 90% under the treatment of the seven alkaloids in a certain dose range. Aconitine, 12-epi-napelline, songorine, 3-acetylaconitine, and mesaconitine could decrease the protein expression of inflammatory factors COX-2, iNOS, TNF-α and IL-1β compared with the model group. Moreover, 12-epi-napelline, aconitine, and mesaconitine could down-regulate the expression of MMP-13 and up-regulate the expression of aggrecan and collagen Ⅱ. In addition, compared with the model group and other Bangna alkaloids, 12-epi-napelline significantly up-regulated the expression of FGF2. Therefore, 12-epi-napelline was selected for the animal experiment in vivo. Immunohistochemistry results showed that 12-epi-napelline could significantly reduce the expression of MMP-13 and TNF-α in cartilage tissues, and up-regulate the expression of FGF2 compared with the model group. In conclusion, among the seven Bangna alkaloids, 12-epi-napelline can promote the repair of OA in rats by down-regulating the expression of MMP-13 and TNF-α and up-regulating the expression of FGF2.
Aconitine/therapeutic use*
;
Aconitum/chemistry*
;
Aggrecans/metabolism*
;
Alkaloids/therapeutic use*
;
Animals
;
Cells, Cultured
;
Cyclooxygenase 2/metabolism*
;
Fibroblast Growth Factor 2/therapeutic use*
;
Interleukin-1beta/metabolism*
;
Iodoacetic Acid/therapeutic use*
;
Lipopolysaccharides
;
Male
;
Matrix Metalloproteinase 13/metabolism*
;
Medicine, Tibetan Traditional
;
NF-kappa B/metabolism*
;
Osteoarthritis/drug therapy*
;
Rats
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha/metabolism*
9.Preventive and therapeutic effect of bioactive component of licorice on antidepressant-induced liver injury.
Wen-Qing MU ; Guang XU ; Jia ZHAO ; Yuan-Yuan CHEN ; Zhao-Fang BAI ; Xiao-He XIAO
China Journal of Chinese Materia Medica 2022;47(22):6146-6154
Since exploding rates of modern mental diseases, application of antidepressants has increased. Worryingly, the antidepressant-induced liver injury has gradually become a serious health burden. Furthermore, since most of the knowledge about antidepressant hepatotoxicity are from pharmacovigilance and clinical case reports and lack of observational studies, the underlying mechanisms are poorly understood and there is a lack of efficient treatment strategies. In this study, antidepressant paroxetine directly triggered inflammasome activation evidenced by caspase-1 activation and downstream effector cytokines interleukin(IL)-1β secretion. The pretreatment of echinatin, a bioactive component of licorice, completely blocked the activation. This study also found that echinatin effectively inhibited the production of inflammasome-independent tumor necrosis factor α(TNF)-α induced by paroxetine. Mechanistically, the accumulation of mitochondrial reactive oxygen species(mtROS) was a key upstream event of paroxetine-induced inflammasome activation, which was dramatically inhibited by echinatin. In the lipopolysaccharide(LPS)-mediated idiosyncratic drug-induced liver injury(IDILI) model, the combination of LPS and paroxetine triggered aberrant activation of the inflammasome to induce idiosyncratic hepatotoxicity, which was reversed by echinatin pretreatment. Notably, this study also found that various bioactive components of licorice had an inhibitory effect on paroxetine-triggered inflammasome activation. Meanwhile, multiple antidepressant-induced aberrant activation of the inflammasome could be completely blocked by echinatin pretreatment. In conclusion, this study provides a novel insight for mechanism of antidepressant-induced liver injury and a new strategy for the treatment of antidepressant-induced hepatotoxicity.
Animals
;
Humans
;
Mice
;
Antidepressive Agents/adverse effects*
;
Chemical and Drug Induced Liver Injury, Chronic/prevention & control*
;
Glycyrrhiza/chemistry*
;
Inflammasomes/drug effects*
;
Interleukin-1beta/metabolism*
;
Lipopolysaccharides/toxicity*
;
Mice, Inbred C57BL
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Paroxetine/adverse effects*
;
Tumor Necrosis Factor-alpha
;
Chalcones/therapeutic use*
10.Proteomics analysis of Astragalus polysaccharide on TLR4-activated lung cancer cell-derived exosomes.
Kang-Die HU ; Kai-Ge YANG ; Cheddah SOUMIA ; Ming-Yuan WU ; Chao YAN ; Xin-Yan LI ; Yan WANG
China Journal of Chinese Materia Medica 2022;47(21):5908-5915
Astragalus polysaccharide(APS), one of the main active components of Astragali Radix, plays an anti-tumor effect by regulating the inflammatory microenvironment of tumors. Exosomes are small extracellular vesicles with a diameter ranging from 50 to 200 nm and carry several biological components from parental cells such as nucleic acids and proteins. When combined with recipient cells, they play an important role in intercellular communication and immune response. In this study, exosomes released from H460 cells at the inflammatory state or with APS addition activated by Toll-like receptor 4(TLR4) were extracted by ultracentrifugation and characterized by Western blot, transmission electron microscopy, and nanoparticle tracking analysis. The exosomal proteins derived from H460 cells in the three groups were further analyzed by label-free proteomics, and 897, 800, and 911 proteins were identified in the three groups(Con, LPS, and APS groups), 88% of which belonged to the ExoCarta exosome protein database. Difference statistical analysis showed that the expression of 111 proteins was changed in the LPS group and the APS group(P<0.05). The biological information analysis of the differential proteins was carried out. The molecular functions, biological processes, and signaling pathways related to the differential proteins mainly involved viral processes, protein binding, and bacterial invasion of proteasome and epithelial cells. Key differential proteins mainly included plasminogen activator inhibitor-1, laminin α5, laminin α1, and CD44, indicating that tumor cells underwent systemic changes in different states and were reflected in exosomes in the inflammatory microenvironment. The analysis results also suggested that APS might affect the inflammatory microenvironment through the TLR4/MyD88/NF-κB signaling pathway or the regulation of the extracellular matrix. This study is conducive to a better understanding of the mechanism of tumor development in the inflammatory state and the exploration of the anti-inflammatory effect of APS at the exosome level.
Humans
;
Exosomes/metabolism*
;
Proteomics
;
Toll-Like Receptor 4/metabolism*
;
Lipopolysaccharides
;
Astragalus Plant/chemistry*
;
Lung Neoplasms/metabolism*
;
Polysaccharides/metabolism*
;
Tumor Microenvironment

Result Analysis
Print
Save
E-mail