1.mTOR promotes oxLDL-induced vascular smooth muscle cell ferroptosis by inhibiting autophagy.
Yi LI ; Lijun ZHANG ; Yuke ZHANG ; Qi ZHANG ; Lijun ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):687-694
Objective To explore the role and mechanism of mammalian target of rapamycin (mTOR) in oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in vascular smooth muscle cells (VSMCs). Methods A model of oxLDL-induced VSMC ferroptosis was established. VSMCs were co-treated with either the mTOR inhibitor rapamycin or the autophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP), followed by detection of autophagy and ferroptosis-related indexes. Quantitative real-time PCR and Western blot were used respectively to analyze the expression of mTOR, glutathione peroxidase 4 (GPX4), sequestosome 1 (p62), and microtubule-associated protein 1 light chain 3 (LC3). Flow cytometry was employed to assess VSMC death. C11 BODIPY fluorescent staining was used to measure cellular lipid peroxidation levels. Colorimetric assays were performed to determine the contents of malondialdehyde (MDA), ferrous ion (Fe2+) and glutathione (GSH). Results oxLDL significantly upregulated mTOR expression in VSMCs, while increasing p62 expression and reducing LC3 expression, thereby suppressing VSMC autophagy. Compared with oxLDL treatment alone, rapamycin co-treatment reversed oxLDL-induced VSMC ferroptosis, as characterized by reduced VSMC death, increased GPX4 expression and GSH contents, along with decreased MDA content, Fe2+ content and lipid peroxidation levels. Similarly, CCCP co-treatment activated autophagy characterized by reduced p62 expression and elevated LC3 expression, which subsequently alleviated oxLDL-induced ferroptosis, showing reduced VSMC death, increased GPX4 expressions and GSH contents, and decreased MDA content, Fe2+ content and lipid peroxidation levels. Moreover, mTOR inhibition by rapamycin significantly reversed the oxLDL-induced upregulation of p62 and downregulation of LC3. Conclusion mTOR may promote oxLDL-induced VSMC ferroptosis by suppressing autophagy.
Ferroptosis/drug effects*
;
Lipoproteins, LDL/metabolism*
;
TOR Serine-Threonine Kinases/physiology*
;
Autophagy/drug effects*
;
Muscle, Smooth, Vascular/metabolism*
;
Animals
;
Rats
;
Myocytes, Smooth Muscle/cytology*
;
Cells, Cultured
;
Lipid Peroxidation/drug effects*
;
Sequestosome-1 Protein/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism*
;
Microtubule-Associated Proteins/genetics*
;
Sirolimus/pharmacology*
2.Berberine Hydrochloride Improves Cognitive Function and Hippocampal Antioxidant Status in Subchronic and Chronic Lead Poisoning.
Fatemeh Zare MEHRJERDI ; Azadeh Shahrokhi RAEINI ; Fatemeh Sadate ZEBHI ; Zeynab HAFIZI ; Reyhaneh MIRJALILI ; Faezeh Afkhami AGHDA
Chinese journal of integrative medicine 2025;31(1):49-54
OBJECTIVES:
To determine the neuroprotective effects of berberine hydrochloride (BBR) against lead-induced injuries on the hippocampus of rats.
METHODS:
Wistar rats were exposed orally to doses of 100 and 500 ppm lead acetate for 1 and 2 months to develop subchronic and chronic lead poisening models, respectively. For treatment, BBR (50 mg/kg daily) was injected intraperitoneally to rats poisoned with lead. At the end of the experiment, the spatial learning and memory of rats were assessed using the Morris water maze test. Hippocampal tissue changes were examined by hematoxylin and eosin staining. The activity of antioxidant enzymes catalase, superoxide dismutase, glutathione peroxidase, and malondialdehyde levels as parameters of oxidative stress and antioxidant status of the hippocampus were evaluated.
RESULTS:
BBR reduced cognitive impairment in rats exposed to lead (P<0.05 or P<0.01). The resulting biochemical changes included a decrease in the activity of antioxidants and an increase in lipid peroxidation of the hippocampus of lead-exposed rats (P<0.05 or P<0.01), which were significantly modified by BBR (P<0.05). BBR also increased the density of healthy cells in the hippocampus of leadexposed rats (P<0.05). Significant changes in tissue morphology and biochemical factors of the hippocampus were observed in rats that received lead for 2 months (P<0.05). Most of these changes were insignificant in rats that received lead for 1 month.
CONCLUSION
BBR can improve oxidative tissue changes and hippocampal dysfunction in lead-exposed rats, which may be due to the strong antioxidant potential of BBR.
Animals
;
Hippocampus/pathology*
;
Rats, Wistar
;
Antioxidants/pharmacology*
;
Berberine/therapeutic use*
;
Cognition/drug effects*
;
Male
;
Lead Poisoning/metabolism*
;
Chronic Disease
;
Oxidative Stress/drug effects*
;
Maze Learning/drug effects*
;
Rats
;
Lipid Peroxidation/drug effects*
;
Malondialdehyde/metabolism*
3.Esculetin triggers ferroptosis via inhibition of the Nrf2-xCT/GPx4 axis in hepatocellular carcinoma.
Zhixin QU ; Jing ZENG ; Laifeng ZENG ; Xianmei LI ; Fenghua ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):443-456
Esculetin, a natural dihydroxy coumarin derived from the Chinese herbal medicine Cortex Fraxini, has demonstrated significant pharmacological activities, including anticancer properties. Ferroptosis, an iron-dependent form of regulated cell death, has garnered considerable attention due to its lethal effect on tumor cells. However, the exact role of ferroptosis in esculetin-mediated anti-hepatocellular carcinoma (HCC) effects remains poorly understood. This study investigated the impact of esculetin on HCC cells both in vitro and in vivo. The findings indicate that esculetin effectively inhibited the growth of HCC cells. Importantly, esculetin promoted the accumulation of intracellular Fe2+, leading to an increase in ROS production through the Fenton reaction. This event subsequently induced lipid peroxidation (LPO) and triggered ferroptosis within the HCC cells. The occurrence of ferroptosis was confirmed by the elevation of malondialdehyde (MDA) levels, the depletion of glutathione peroxidase (GSH-Px) activity, and the disruption of mitochondrial morphology. Notably, the inhibitor of ferroptosis, ferrostatin-1 (Fer-1), attenuated the anti-tumor effect of esculetin in HCC cells. Furthermore, the findings revealed that esculetin inhibited the Nrf2-xCT/GPx4 axis signaling in HCC cells. Overexpression of Nrf2 upregulated the expression of downstream SLC7A11 and GPX4, consequently alleviating esculetin-induced ferroptosis. In conclusion, this study suggests that esculetin exerts an anti-HCC effect by inhibiting the activity of the Nrf2-xCT/GPx4 axis, thereby triggering ferroptosis in HCC cells. These findings may contribute to the potential clinical use of esculetin as a candidate for HCC treatment.
Umbelliferones/administration & dosage*
;
Ferroptosis/drug effects*
;
Carcinoma, Hepatocellular/physiopathology*
;
NF-E2-Related Factor 2/genetics*
;
Humans
;
Liver Neoplasms/physiopathology*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Animals
;
Cell Line, Tumor
;
Mice
;
Amino Acid Transport System y+/genetics*
;
Mice, Inbred BALB C
;
Male
;
Signal Transduction/drug effects*
;
Lipid Peroxidation/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Mice, Nude
4.Hydrogen Sulfide Alleviates Lipid Peroxidation-Mediated Carbonyl Stress in Uranium-Intoxicated Kidney Cells via Nrf2/ARE Signaling.
Jia Lin LIU ; Min WANG ; Rui ZHANG ; Ji Fang ZHENG ; Xi Xiu JIANG ; Qiao Ni HU
Biomedical and Environmental Sciences 2025;38(4):484-500
OBJECTIVE:
To explore the protective effects and underlying mechanisms of H 2S against lipid peroxidation-mediated carbonyl stress in the uranium-treated NRK-52E cells.
METHODS:
Cell viability was evaluated using CCK-8 assay. Apoptosis was measured using flow cytometry. Reagent kits were used to detect carbonyl stress markers malondialdehyde, 4-hydroxynonenal, thiobarbituric acid reactive substances, and protein carbonylation. Aldehyde-protein adduct formation and alcohol dehydrogenase, aldehyde dehydrogenase 2, aldo-keto reductase, nuclear factor E2-related factor 2 (Nrf2), and cystathionine β-synthase (CBS) expression were determined using western blotting or real-time PCR. Sulforaphane (SFP) was used to activate Nrf2. RNA interference was used to inhibit CBS expression.
RESULTS:
GYY4137 (an H 2S donor) pretreatment significantly reversed the uranium-induced increase in carbonyl stress markers and aldehyde-protein adducts. GYY4137 effectively restored the uranium-decreased Nrf2 expression, nuclear translocation, and ratio of nuclear to cytoplasmic Nrf2, accompanied by a reversal of the uranium-decreased expression of CBS and aldehyde-metabolizing enzymes. The application of CBS siRNA efficiently abrogated the SFP-enhanced effects on the expression of CBS, Nrf2 activation, nuclear translocation, and ratio of nuclear to cytoplasmic Nrf2 and concomitantly reversed the SFP-enhanced effects of the uranium-induced mRNA expression of aldehyde-metabolizing enzymes. Simultaneously, CBS siRNA reversed the SFP-mediated alleviation of the uranium-induced increase in reactive aldehyde levels, apoptosis rates, and uranium-induced cell viability.
CONCLUSION
H 2S induces Nrf2 activation and nuclear translocation, which modulates the expression of aldehyde-metabolizing enzymes and the CBS/H 2S axis. Simultaneously, the Nrf2-controlled CBS/H 2S axis may at least partially promote Nrf2 activation and nuclear translocation. These events form a cycle-regulating mode through which H 2S attenuates the carbonyl stress-mediated NRK-52E cytotoxicity triggered by uranium.
NF-E2-Related Factor 2/genetics*
;
Animals
;
Hydrogen Sulfide/pharmacology*
;
Rats
;
Signal Transduction/drug effects*
;
Lipid Peroxidation/drug effects*
;
Cell Line
;
Uranium/toxicity*
;
Antioxidant Response Elements
;
Kidney/metabolism*
;
Oxidative Stress/drug effects*
;
Cell Survival/drug effects*
;
Apoptosis/drug effects*
5.Exocarpium Citri Grandis formula granules alleviate fatty liver disease in Zebrafish by maintaining iron homeostasis and suppressing lipid peroxidation and ferroptosis.
Yuxue ZAHNG ; Jieying LAN ; Xinyi MA ; Qiong ZHOU ; Mengchen QIN ; Lei GAO
Journal of Southern Medical University 2024;44(12):2265-2275
OBJECTIVES:
To investigate the therapeutic effect of Exocarpium Citri Grandis formula granules (ECGFG) on fatty liver disease (FLD) in zebrafish and explore the underlying mechanism.
METHODS:
Nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD) models were established in zebrafish larvae at 3 days post fertilization (dpf), in which the treatment efficacy of 16, 32, or 64 μg/mL ECGFG was evaluated by examining zebrafish survival and liver pathologies and using whole-fish oil red O staining and RT-qPCR. The therapeutic mechanism of ECGFG for FLD was investigated using Prussian blue staining, DCFH-DA probe, MDA content detection, RT-qPCR assay and immunohistochemical staining for CAV1.
RESULTS:
In zebrafish models of NAFLD and ALD, treatment with ECGFG significantly reduced lipid accumulation and the expression levels of FASN, SREBP1, HMGCRA, TNF-α and IL-6, increased the expressions of Apoa1 and PPARα, and reduced iron deposition and the contents of MDA and ROS in the liver. In zebrafish models of NAFLD, treatment with ECGFG at the 3 doses significantly increased hepatic expressions of Tf, TfR, FPN and SLC7A11, and at the doses of 32 and 64 μg/mL, ECGFG obviously increased hepatic expression of GPX4. ALD fish models showed significantly increased hepatic expressions of Tf, TfR and FPN, which were effectively lowered by treatment with ECGFG at the 3 doses. ECGFG did not obviously affect the expression of SLC7A11, but its high dose (64 μg/mL) caused significant elevation of GPX4 expression. Both zebrafish models of NAFLD and ALD showed obviously increased CAV1 expression level in the liver, which was significantly reduced by treatment with 32 and 64 μg/mL ECGFG.
CONCLUSIONS
In zebrafish models of NAFLD and ALD, ECGFG can alleviate lipid accumulation and inflammatory response and lower the expression level of CAV1 to restore iron homeostasis and suppress lipid peroxidation and ferroptosis in the liver.
Animals
;
Zebrafish
;
Ferroptosis/drug effects*
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Iron/metabolism*
;
Disease Models, Animal
;
Lipid Peroxidation/drug effects*
;
Homeostasis
;
Fatty Liver/drug therapy*
;
Liver/metabolism*
;
Lipid Metabolism/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
6.Research progress on metal pollutants inducing neurotoxicity through ferroptosis.
Ziyu QIN ; Yuqing CHEN ; Xinyuan ZHAO ; Shali YU
Journal of Zhejiang University. Medical sciences 2024;53(6):699-707
It has been confirmed that exposure to various metal pollutants can induce neurotoxicity, which is closely associated with the occurrence and development of neurological disorders. Ferroptosis is a form of cell death in response to metal pollutant exposure and it is closely related to oxidative stress, iron metabolism and lipid peroxidation. Recent studies have revealed that ferroptosis plays a significant role in the neurotoxicity induced by metals such as lead, cadmium, manganese, nickel, and antimony. Lead exposure triggers ferroptosis through oxidative stress, iron metabolism disorder and inflammation. Cadmium can induce ferroptosis through iron metabolism, oxidative stress and ferroptosis related signaling pathways. Manganese can promote ferroptosis through mitochondrial dysfunction, iron metabolism disorder and oxidative stress. Nickel can promote ferroptosis by influencing mitochondrial function, disrupting iron homeostasis and facilitating lipid peroxidation in the central nervous system. Antimony exposure can induce glutathione depletion by activating iron autophagy, resulting in excessive intracellular iron deposition and ultimately causing ferroptosis. This article reviews the effects of metal pollutants on ferroptosis-related indicators and discusses the specific mechanisms by which each metal triggers ferroptosis. It provides a reference for identifying targets for preventing neurotoxicity and for developing treatment strategies for neurological disorders.
Ferroptosis/drug effects*
;
Humans
;
Iron/metabolism*
;
Oxidative Stress/drug effects*
;
Neurotoxicity Syndromes/metabolism*
;
Cadmium/adverse effects*
;
Animals
;
Lipid Peroxidation/drug effects*
;
Metals/metabolism*
;
Lead/adverse effects*
;
Environmental Pollutants/toxicity*
;
Manganese/adverse effects*
;
Nickel/adverse effects*
;
Mitochondria/drug effects*
;
Signal Transduction/drug effects*
7.Cytotoxicity and underlying mechanism of evodiamine in HepG2 cells.
Ya Dong GAO ; An ZHU ; Lu Di LI ; Tao ZHANG ; Shuo WANG ; Dan Ping SHAN ; Ying Zi LI ; Qi WANG
Journal of Peking University(Health Sciences) 2021;53(6):1107-1114
OBJECTIVE:
To investigate evodiamine (EVO)-induced hepatotoxicity and the underlying mechanism.
METHODS:
HepG2 cells were treated with EVO (0.04-25 μmol/L) for different time intervals, and the cell survival rate was examined by cell counting kit-8 (CCK-8) method. After HepG2 cells were treated with EVO (0.2, 1 and 5 μmol/L) for 48 h, the alanine transaminase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (ALP) activities and total bilirubin (TBIL) content of supernatant were detected. A multifunctional microplate reader was used to detect the intracellular superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in HepG2 cells to evaluate the level of cell lipid peroxidation damage. The interactions between EVO and apoptosis, autophagy or ferroptosis-associated proteins were simulated by molecular docking. The HepG2 cells were stained by mitochondrial membrane potential (MMP) fluorescent probe (JC-10) and annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI), and MMP and apoptosis in HepG2 cells were detected by flow cytometry. The protein expression levels of caspase-9, caspase-3, bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2) were detected by Western blot.
RESULTS:
The cell survival rate was significantly reduced after the HepG2 cells were exposed to EVO (0.04-25 μmol/L) in a time- and dose-dependent manner. The half maximal inhibitory concentration (IC50) of the HepG2 cells treated with EVO for 24, 48 and 72 h were 85.3, 6.6 and 4.7 μmol/L, respectively. After exposure to EVO (0.2, 1 and 5 μmol/L) for 48 h, the ALT, AST, LDH, ALP activities and TBIL content in the HepG2 cell culture supernatant, and the MDA content in the cells were increased, and SOD enzyme activity was decreased. Molecular docking results showed that EVO interacted with apoptosis-associated proteins (caspase-9 and caspase-3) better. JC-10 and Annexin V-FITC/PI staining assays demonstrated that EVO could decrease MMP and promote apoptosis in the HepG2 cells. Western blot results indicated that the protein expressions of cleaved caspase-9 and cleaved caspase-3 were upregulated in the HepG2 cell treated with EVO for 48 h. In contrast, the protein expressions of pro-caspase-3, BSEP and MRP2 were downregulated.
CONCLUSION
These results suggested that 0.2, 1 and 5 μmol/L EVO had the potential hepatotoxicity, and the possible mechanism involved lipid peroxidation damage, cell apoptosis, and cholestasis.
ATP Binding Cassette Transporter, Subfamily B, Member 11
;
Apoptosis
;
Caspase 3
;
Caspase 9
;
Cholestasis
;
Hep G2 Cells/drug effects*
;
Humans
;
Lipid Peroxidation
;
Liver/drug effects*
;
Molecular Docking Simulation
;
Multidrug Resistance-Associated Protein 2
;
Quinazolines/toxicity*
8.Mechanisms of tanshinone Ⅱ_A in reducing 4-HNE-induced hepatocyte damage by activating PPARα.
Qian-Yu QIAN ; Na YING ; Zhen YANG ; Li ZHOU ; Qing-Sheng LIU ; Zi-Yi HU ; Chun-Lei FAN ; Song-Tao LI ; Xiao-Bing DOU
China Journal of Chinese Materia Medica 2019;44(9):1862-1868
Tanshinone Ⅱ_A( Tan Ⅱ_A),the liposoluble constituents of Salvia miltiorrhiza,can not only ameliorate the lipidic metabolism and decrease the concentration of lipid peroxidation,but also resist oxidation damage,scavenge free radicals and control inflammation,with a protective effect on prognosis after liver function impairment. Therefore,the studies on the exact mechanism of Tan Ⅱ_A in protecting the liver can provide important theoretical and experimental basis for the prevention and treatment effect of Tan Ⅱ_A for liver injury. In the present study,the protective effects and mechanism of Tan Ⅱ_A on 4-hydroxynonenal( 4-HNE)-induced liver injury were investigated in vitro. Normal liver tissues NCTC 1469 cells were used to induce hepatocytes oxidative damages by 4-HNE treatment. The protective effect of Tan Ⅱ_A on hepatocytes oxidative damages was detected by release amount of lactate dehydrogenase( LDH) analysis and hoechst staining. The protein expression changes of peroxisome proliferator-activated receptor α( PPARα) and peroxisome proliferator response element( PPRE) were analyzed by Western blot analysis in NCTC 1469 cells before and after Tan Ⅱ_A treatment. The gene expression changes of fatty aldehyde dehydrogenase( FALDH) were analyzed by Real-time polymerase chain reaction( PCR) analysis. The results showed that 4-HNE increased the release amount of LDH,lowered the cell viability of NCTC 1469 cells,and Tan Ⅱ_A reversed 4-HNE-induced hepatocyte damage. Western blot analysis and RT-PCR analysis results showed that 4-HNE decreased the expression of PPARα and FALDH and increased the expression of 4-HNE. However,the expression of PPARα and FALDH were increased significantly and the expression of 4-HNE was decreased obviously after Tan Ⅱ_A treatment. This study confirmed that the curative effect of Tan Ⅱ_A was obvious on hepatocytes damage,and the mechanism may be associated with activating PPARα and FALDH expression as well as scavenging 4-HNE.
Aldehyde Oxidoreductases
;
metabolism
;
Aldehydes
;
Animals
;
Cell Line
;
Diterpenes, Abietane
;
pharmacology
;
Hepatocytes
;
drug effects
;
Lipid Peroxidation
;
Mice
;
Oxidative Stress
;
PPAR alpha
;
metabolism
9.Effects of Tripterygium Glycosides Tablets from 6 different manufacturers on acute liver injury of normal mice.
Chun-Fang LIU ; Jing-Xuan ZHANG ; Yi-Qun LI ; Chun LI ; Xuan-Xuan ZHU ; Ke-Xin JIA ; Jin-Xia WANG ; Jing-Xia WANG ; Yuan-Fang FAN ; Ying XU ; Ting WANG ; Na LIN
China Journal of Chinese Materia Medica 2019;44(16):3494-3501
The aim of this paper was to compare the performance of acute liver injury in mice induced by Tripterygium Glycosides Tablets from 6 different manufacturers,and to explore the toxicity mechanism from the perspective of oxidative stress and apoptosis preliminarily. Male or female mice were randomly divided into normal group,Zhejiang group,Hunan group,Hubei group,Shanghai group,Jiangsu group and Fujian group. Mice in Tripgerygium Glycosides Tablets groups were given 16 times the clinical equivalent dose( 300 mg·kg-1) Tripgerygium Glycosides Tablets by oral administration for one time,mice were executed in 24 h after lavaged.Then the visceral brain coefficient of the organ was calculated. Histopathological changes of liver were observed by hematoxylin-eosin staining. Td T-mediated d UTP nick-end labeling was used to detect the apoptosis of the liver cells and the protein content of oxidative stress related factors in liver homogenate. Nuclear transcription factor E2-related factor( Nrf2) and heme oxygenase-1( HO-1) as well as mitochondrial mediated apoptosis-related protein expression levels of Bax and Bcl-2 in hepatic tissue were measured by Western blot.Within 24 hours of administration,6 male mice in Jiangsu group and 2 female mice in Zhejiang group were dying; compared with normal ones,liver coefficients of mice in Zhejiang,Shanghai,Jiangsu and Hunan groups were significantly increased,thymus coefficients in the first two groups were significantly reduced,as well as the lung coefficients of Fujian group mice,the rest was normal. In addition to Hubei group,serum AST,ALT or ALP levels of mice were increased,while TBi L were not being affected. Histopathological changes and apoptosis of liver cells were observed in all mice,and the degree of severity was ranked as Jiangsu,Zhejiang,Shanghai,Hunan,Hubei and Fujian group. All Tripterygium Glycosides Tablets increased the MDA and reduced the content of T-SOD,CAT or GSH in liver tissue while inhibited Nrf2,HO-1 and Bcl-2,increased the protein expression level of Bax( except Hunan group). Tripgerygium Glycosides Tablets from 6 manufacturers all resulted in liver function damage and liver histopathological changes,especially in Jiangsu,Hubei and Fujian,and the mechanism may related to inhibit Nrf2/HO-1 oxidative stress pathway and activate Bax/Bcl-2 apoptosis pathway to mediate lipid peroxidation and induce liver cell apoptosis. Triptolide A may be one of the main toxic components of Tripgerygium Glycosides Tablets that causing drug-induced liver injury. This study was conducted on normal mice with super dose medication,so the relevant results are for reference only.
Animals
;
Apoptosis
;
Chemical and Drug Induced Liver Injury
;
Drugs, Chinese Herbal
;
toxicity
;
Female
;
Glycosides
;
toxicity
;
Heme Oxygenase-1
;
metabolism
;
Lipid Peroxidation
;
Liver
;
drug effects
;
Male
;
Membrane Proteins
;
metabolism
;
Mice
;
NF-E2-Related Factor 2
;
metabolism
;
Oxidative Stress
;
Proto-Oncogene Proteins c-bcl-2
;
metabolism
;
Random Allocation
;
Tablets
;
Tripterygium
;
toxicity
;
bcl-2-Associated X Protein
;
metabolism
10.Potassium Bromate-induced Changes in the Adult Mouse Cerebellum Are Ameliorated by Vanillin.
Hajer BEN SAAD ; Dorra DRISS ; Imen JABALLI ; Hanen GHOZZI ; Ons BOUDAWARA ; Michael DROGUET ; Christian MAGNÉ ; Monsef NASRI ; Khaled Mounir ZEGHAL ; Ahmed HAKIM ; Ibtissem BEN AMARA
Biomedical and Environmental Sciences 2018;31(2):115-125
OBJECTIVE:
The current study aimed to elucidate the effect of vanillin on behavioral changes, oxidative stress, and histopathological changes induced by potassium bromate (KBrO3), an environmental pollutant, in the cerebellum of adult mice.
METHODS:
The animals were divided into four groups: group 1 served as a control, group 2 received KBrO3, group 3 received KBrO3 and vanillin, and group 4 received only vanillin. We then measured behavioral changes, oxidative stress, and molecular and histological changes in the cerebellum.
RESULTS:
We observed significant behavioral changes in KBrO3-exposed mice. When investigating redox homeostasis in the cerebellum, we found that mice treated with KBrO3 had increased lipid peroxidation and protein oxidation in the cerebellum. These effects were accompanied by decreased Na+-K+ and Mg2+ ATPase activity and antioxidant enzyme gene expression when compared to the control group. Additionally, there was a significant increase in cytokine gene expression in KBrO3-treated mice. Microscopy revealed that KBrO3 intoxication resulted in numerous degenerative changes in the cerebellum that were substantially ameliorated by vanillin supplementation. Co-administration of vanillin blocked the biochemical and molecular anomalies induced by KBrO3.
CONCLUSION
Our results demonstrate that vanillin is a potential therapeutic agent for oxidative stress associated with neurodegenerative diseases.
Animals
;
Antioxidants
;
metabolism
;
Behavior, Animal
;
drug effects
;
Benzaldehydes
;
pharmacology
;
Bromates
;
toxicity
;
Cerebellum
;
drug effects
;
metabolism
;
pathology
;
Cytokines
;
genetics
;
metabolism
;
Environmental Pollutants
;
toxicity
;
Gene Expression
;
drug effects
;
Lipid Peroxidation
;
drug effects
;
Mice
;
Oxidative Stress
;
drug effects
;
Rotarod Performance Test

Result Analysis
Print
Save
E-mail