1.Effect of Wenpi Pills on lipid metabolism in mice with non-alcoholic fatty liver disease induced by various diets.
Chen-Fang ZHANG ; Kai LIU ; Chao-Wen FAN ; Mei-Ting TAI ; Xin ZHANG ; Rong ZHANG ; Qin-Wen CHEN ; Zun-Li KE
China Journal of Chinese Materia Medica 2025;50(10):2730-2739
The aim of this study was to investigate the improvement effect of Wenpi Pills(WPP) on non-alcoholic fatty liver disease(NAFLD). The experiment was divided into two parts, using C57BL/6 mouse models induced by a high-fat diet(HFD) and a methionine and choline deficiency diet(MCD). The HFD-induced experiment lasted for 16 weeks, while the MCD-induced experiment lasted for 6 weeks. Mice in both parts were divided into four groups: control group, model group, low-dose WPP group(3.875 g·kg~(-1), WPP_L), and high-dose WPP group(15.5 g·kg~(-1), WPP_H). After sample collection from the HFD-induced mice, lipid content in the serum and liver, liver function indexes in the serum, and hepatic pathology were examined. Real-time fluorescent quantitative reverse transcription PCR(qRT-PCR) was used to detect the expression of lipid-related genes. After sample collection from the MCD-induced mice, serum liver function indexes and inflammatory factors were measured, and hepatic pathology and lipid changes were analyzed by hematoxylin-eosin(HE) staining and widely targeted lipidomic profiling, respectively. The results from the HFD-induced experiment showed that, compared with the HFD group, WPP administration significantly reduced the levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), triglyceride(TG), and total cholesterol(TC) in the serum, with the WPP_H group showing the most significant improvement. HE staining results indicated that, compared with the HFD group, WPP treatment improved the morphology of white adipocytes, reducing their size, and alleviated hepatic steatosis and lipid droplet accumulation. The qRT-PCR results suggested that WPP might increase the mRNA expression of liver cholesterol-converting genes, such as liver X receptor α(LXRα) and cytochrome P450 family 27 subfamily A member 1(CYP27A1), as well as lipid consumption genes like peroxisome proliferator-activated receptor α(PPARα) and adenosine mono-phosphate-activated protein kinase(AMPK). Meanwhile, WPP decreased the mRNA expression of lipid synthesis genes, including fatty acid synthetase(FAS), stearoyl-CoA desaturase 1(SCD1), and sterol regulatory element-binding protein 1c(SREBP-1c), thereby reducing liver lipid accumulation. The results from the MCD-induced experiment showed that, compared with the MCD group, WPP administration reduced the levels of ALT, AST, and inflammatory factors in the serum, thereby alleviating liver injury and the inflammatory response. HE staining of liver tissue indicated that WPP effectively improved hepatic steatosis. Non-targeted lipidomics analysis showed that WPP improved lipid metabolism disorders in the liver, mainly by affecting the metabolism of TG and cholesterol esters. In conclusion, WPP can improve hepatic lipid accumulation in NAFLD mice induced by both HFD and MCD. This beneficial effect is primarily achieved by alleviating liver injury and inflammation, as well as regulating lipid metabolism.
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Lipid Metabolism/drug effects*
;
Mice
;
Mice, Inbred C57BL
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Diet, High-Fat/adverse effects*
;
Liver/drug effects*
;
Humans
;
Disease Models, Animal
;
Methionine
2.Mechanisms of puerarin-mediated lipid modulation to enhance glucose-lowering effects via hepatic ChREBP/PPARα/PPARγ in vitro.
Can CUI ; Han-Yue XIAO ; Li-Ke YAN ; Zhong-Hua XU ; Wei-Hua LIU ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(14):3951-3961
This study aims to investigate the in vitro mechanisms underlying the beneficial effects of puerarin on hepatic insulin resistance(IR) based on the carbohydrate response element-binding protein(ChREBP)/peroxisome proliferator-activated receptor(PPAR)α/PPARγ axis involved in glucose and lipid metabolism. An IR-HepG2 cell model was established by treating cells with dexamethasone for 48 h, and the cells were then treated with 10, 20, and 40 μmol·L~(-1) puerarin for 24 h. Glucose levels and output in the extracellular fluid were measured by the glucose oxidase method, while cell viability was assessed by the cell counting kit-8(CCK-8) assay. The adenosine triphosphate(ATP) content and glycogen synthesis were evaluated through chemiluminescence and periodic acid-Schiff staining, respectively. Western blot was employed to quantify the protein levels of forkhead box protein O1(FoxO1), phosphorylated forkhead box protein O1 [p-FoxO1(Ser256)], glucagon, phosphofructokinase, liver type(PFKL), pyruvate kinase L-R(PKLR), pyruvate dehydrogenase complex 1(PDHA1), insulin receptor substrate 2(IRS2), phosphatidylinositol 3-kinase p85(PI3KR1), phosphorylated protein kinase B [p-Akt(Thr308)], glycogen synthase(GYS), glycogen phosphorylase, liver type(PYGL), adiponectin(ADPN), ChREBP, PPARα, and PPARγ. Additionally, the protein levels of acetyl-CoA carboxylase 1(ACC1), phosphorylated ATP citrate lyase [p-ACLY(Ser455)], sterol regulatory element binding protein 1c(SREBP-1c), peroxisome proliferator-activated receptor gamma coactivator 1α(PGC1α), carnitine palmitoyltransferase 1α(CPT1α), and glucagon receptor(GCGR) were also determined. Immunofluorescence was employed to visualize the expression and nuclear location of ChREBP/PPARα/PPARγ. Furthermore, quantitative PCR with the antagonists GW6471 and GW9662 was employed to assess Pparα, Pparγ, and Chrebp. The findings indicated that puerarin effectively reduced both the glucose level and glucose output in the extracellular fluid of IR-HepG2 cells without obvious effect on the cell viability, and it increased intracellular glycogen and ATP levels. Puerarin down-regulated the protein levels of FoxO1 and glucagon while up-regulating the protein levels of p-FoxO1(Ser256), PFKL, PKLR, PDHA1, IRS2, PI3KR1, p-Akt(Thr308), GYS, PYGL, ADPN, ACC1, SREBP-1c, p-ACLY(Ser455), PGC1α, CPT1α, and GCGR in IR-HepG2 cells. Furthermore, puerarin up-regulated both the mRNA and protein levels of ChREBP, PPARα, and PPARγ and promoted the translocation into the nucleus. GW6471 was observed to down-regulate the expression of Pparα while up-regulating the expression of Chrebp and Pparγ. GW9662 down-regulated the expression of Pparγ while up-regulating the expression of Pparα, with no significant effect on Chrebp. In summary, puerarin activated the hepatic ChREBP/PPARα/PPARγ axis, thereby coordinating the glucose and lipid metabolism, promoting the conversion of glucose to lipids to exert the blood glucose-lowering effect.
Isoflavones/pharmacology*
;
Humans
;
PPAR gamma/genetics*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Lipid Metabolism/drug effects*
;
PPAR alpha/genetics*
;
Liver/drug effects*
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Insulin Resistance
3.Buyang Huanwu Decoction targets PPARG/SPP1/CD44 signaling pathway: mechanisms of lipid dysregulation and treatment in idiopathic pulmonary fibrosis.
Gang-Gang LI ; Xiao-Chuan PAN ; Fei WANG ; Quan-Yu DU
China Journal of Chinese Materia Medica 2025;50(14):3821-3834
Idiopathic pulmonary fibrosis(IPF) is a chronic progressive interstitial lung disease characterized by a complex pathogenesis and limited treatment options. Although studies have indicated that lipid metabolism dysregulation is associated with the progression of IPF, the core regulatory mechanisms remain unclear. By integrating RNA sequencing data from the GEO database, we identified four key genes related to lipid metabolism: peroxisome proliferator-activated receptor gamma(PPARG), secreted phosphoprotein 1(SPP1), caspase 3(CASP3), and platelet endothelial cell adhesion molecule 1(PECAM1). Further validation using single-cell RNA sequencing revealed the cell-specific expression patterns of these genes. The results found that PPARG was significantly downregulated in alveolar macrophages while SPP1 was significantly upregulated. Mechanistic studies indicated that PPARG negatively regulated SPP1 expression, and the interaction between SPP1 and cluster of differentiation 44(CD44) activated intercellular signaling pathways that promoted fibrosis. Through network pharmacology and molecular docking, it was predicted that the bioactive components of the traditional Chinese medicine formula, namely Buyang Huanwu Decoction may target PPARG to modulate lipid metabolism pathways. In a bleomycin-induced rat model with IPF, this paper randomly divided the rats into six groups(control, group, model group, pirfenidone group, and low, middle, and high-dose groups of Buyang Huanwu Decoction). The results demonstrated that Buyang Huanwu Decoction treatment significantly improved tissue pathological damage, reduced collagen deposition, and alleviated lipid metabolism dysregulation. Western blot analysis confirmed that Buyang Huanwu Decoction mediated the upregulation of PPARG and inhibited the activation of the SPP1/CD44 pathway. The multi-omics study elucidated the role of the PPARG/SPP1/CD44 pathway as a key regulatory factor in lipid metabolism in IPF, providing evidence that Buyang Huanwu Decoction exerted its antifibrotic effects through this novel mechanism and thus offering new insights into the therapeutic prospects for IPF.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Signal Transduction/drug effects*
;
PPAR gamma/genetics*
;
Humans
;
Osteopontin/genetics*
;
Lipid Metabolism/drug effects*
;
Idiopathic Pulmonary Fibrosis/genetics*
;
Hyaluronan Receptors/genetics*
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Molecular Docking Simulation
4.Causal Relationships Between Mineralocorticoid Receptor Activation and Tubulointerstitial Nephritis and Lipid Metabolism Dysregulation: A Mendelian Randomization Study.
Chinese Medical Sciences Journal 2025;40(2):132-143
OBJECTIVES:
To clarify the causal relationship between the level of cytoplasmic unactivated mineralocorticoid receptor (MR) and the development of tubulointerstitial nephritis (TIN), and to evaluate the impact of MR on dyslipidemia, particularly secondary hyperlipemia, in patients with diabetic kidney disease.
METHODS:
We conducted a two-sample Mendelian randomization study using genome-wide association study (GWAS) summary data. Genetic variants associated with MR levels were selected as exposures, with TIN and lipid profiles [including low-density lipoprotein cholesterol (LDL-C), triglyceride, and high-density lipoprotein cholesterol] as outcomes. A two-step Mendelian randomization approach was used to assess TIN as a mediator, employing inverse variance weighted regression as the primary analysis, supplemented by Mendelian randomization-Egger, weighted median, and sensitivity analyses.
RESULTS:
Cytoplasmic unactivated MR level exhibited a significant causal association with a decreased risk of TIN (OR = 0.8598, 95% CI [0.7775-0.9508], P < 0.001). Although no significant causal relationship was identified between MR level and secondary hyperlipemia, a potential association of cytoplasmic unactivated MR level with lower LDL-C levels was observed (OR = 0.9901, 95% CI [0.9821-0.9983], P = 0.018). Additionally, TIN exhibited causal links with secondary hyperlipemia (OR = 1.0016, 95% CI [1.0002-1.0029], P = 0.020) and elevated LDL-C (OR = 1.0111, 95% CI [1.0024-1.0199], P = 0.012), particularly LDL-C in European males (OR = 1.0230, 95% CI [1.0103-1.0358], P < 0.001). Inverse Mendelian randomization analysis revealed causal relationships between TIN and genetically predicted triglyceride (OR = 0.7027, 95% CI [0.6189-0.7978], P < 0.001), high-density lipoprotein cholesterol (OR = 1.1247, 95% CI [1.0019-1.2626], P = 0.046), and LDL-C (OR = 0.8423, 95% CI [0.7220-0.9827], P = 0.029). Notably, TIN mediated 16.7% of the causal association between MR and LDL-C levels.
CONCLUSIONS
MR plays a critical role in the development of TIN and lipid metabolism, highlighting the potential of MR-antagonists in reducing renal damage and lipid metabolism-associated complications.
Humans
;
Mendelian Randomization Analysis
;
Nephritis, Interstitial/metabolism*
;
Receptors, Mineralocorticoid/genetics*
;
Lipid Metabolism/genetics*
;
Genome-Wide Association Study
;
Male
;
Female
;
Polymorphism, Single Nucleotide
;
Dyslipidemias/metabolism*
5.mTOR promotes oxLDL-induced vascular smooth muscle cell ferroptosis by inhibiting autophagy.
Yi LI ; Lijun ZHANG ; Yuke ZHANG ; Qi ZHANG ; Lijun ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):687-694
Objective To explore the role and mechanism of mammalian target of rapamycin (mTOR) in oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in vascular smooth muscle cells (VSMCs). Methods A model of oxLDL-induced VSMC ferroptosis was established. VSMCs were co-treated with either the mTOR inhibitor rapamycin or the autophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP), followed by detection of autophagy and ferroptosis-related indexes. Quantitative real-time PCR and Western blot were used respectively to analyze the expression of mTOR, glutathione peroxidase 4 (GPX4), sequestosome 1 (p62), and microtubule-associated protein 1 light chain 3 (LC3). Flow cytometry was employed to assess VSMC death. C11 BODIPY fluorescent staining was used to measure cellular lipid peroxidation levels. Colorimetric assays were performed to determine the contents of malondialdehyde (MDA), ferrous ion (Fe2+) and glutathione (GSH). Results oxLDL significantly upregulated mTOR expression in VSMCs, while increasing p62 expression and reducing LC3 expression, thereby suppressing VSMC autophagy. Compared with oxLDL treatment alone, rapamycin co-treatment reversed oxLDL-induced VSMC ferroptosis, as characterized by reduced VSMC death, increased GPX4 expression and GSH contents, along with decreased MDA content, Fe2+ content and lipid peroxidation levels. Similarly, CCCP co-treatment activated autophagy characterized by reduced p62 expression and elevated LC3 expression, which subsequently alleviated oxLDL-induced ferroptosis, showing reduced VSMC death, increased GPX4 expressions and GSH contents, and decreased MDA content, Fe2+ content and lipid peroxidation levels. Moreover, mTOR inhibition by rapamycin significantly reversed the oxLDL-induced upregulation of p62 and downregulation of LC3. Conclusion mTOR may promote oxLDL-induced VSMC ferroptosis by suppressing autophagy.
Ferroptosis/drug effects*
;
Lipoproteins, LDL/metabolism*
;
TOR Serine-Threonine Kinases/physiology*
;
Autophagy/drug effects*
;
Muscle, Smooth, Vascular/metabolism*
;
Animals
;
Rats
;
Myocytes, Smooth Muscle/cytology*
;
Cells, Cultured
;
Lipid Peroxidation/drug effects*
;
Sequestosome-1 Protein/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism*
;
Microtubule-Associated Proteins/genetics*
;
Sirolimus/pharmacology*
6.The effects of baicalin on blood lipid metabolism and immune function in rats with gestational diabetes mellitus based on RhoA/ROCK pathway.
Yao LU ; Lin SHI ; Le WANG ; Xiaoli LUAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):992-999
Objective To investigate the effect and mechanism of baicalin on blood lipid metabolism and immune function in rats with gestational diabetes mellitus (GDM). Methods Female rats fed with high-fat and high-sugar diet and male rats fed with ordinary diet were caged together to prepare pregnant rats, and the GDM rat model was established by intraperitoneal injection of streptozotocin (35 mg/kg). GDM rats were randomly divided into a model group, a fasudil (FA) (RhoA/RocK inhibitor) group (10 mg/kg), low-dose (100 mg/kg) and high-dose (200 mg/kg) baicalin groups, and a high-dose baicalin combined with LPA (RhoA/RocK activator) group (200 mg/kg baicalin+1 mg/kg LPA ), with 12 rats in each group. Another 12 pregnant rats fed with high-fat and high-sugar diet were selected as the control group. After 2 weeks of corresponding drug intervention in each group, the level of fasting blood glucose (FBG) was detected by blood glucose meter. The level of fasting insulin (FINS) in serum was detected by ELISA, and the insulin resistance index (HOMA-IR) was calculated. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) in serum, and the levels of immunomodulator tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and IL-10 in peripheral blood were detected by the kit. The histopathological changes of liver were observed by HE staining. The proportion of T lymphocyte subsets in peripheral blood was detected by flow cytometry. The mRNA and protein expressions of Ras homolog gene family member A (RhoA), Rho associated coiled-coil forming protein kinase 1 (ROCK1), and ROCK2 in liver tissue were detected by real-time quantitative PCR and Western blot. Results Compared with the control group, the levels of FBG, FINS, HOMA-IR, ALT, AST, TG, TC, and LDL-C in serum, the levels of TNF-α, IL-6, the percentage of CD8+T cell in peripheral blood, and the mRNA and protein expression of RhoA, ROCK1, and ROCK2 in liver tissue in the model group were higher; the level of HDL-C in serum, the percentage of IL-10 levels, CD3+T cells, CD4+T cell, and CD4+T/CD8+T ratio in peripheral blood were lower. Compared with the model group, the levels of FBG, FINS, HOMA-IR, ALT, AST, TG, TC, and LDL-C in serum, the levels of TNF-α, IL-6, the percentage of CD8+T cell in peripheral blood, and the mRNA and protein expression of RhoA, ROCK1, and ROCK2 in liver tissue in the the FA group and low-dose and high-dose baicalin groups were lower; the level of HDL-C in serum, IL-10 level, the percentage of CD3+T cells, CD4+T cell, and CD4+T/CD8+T ratio in peripheral blood were higher. LPA could obviously weaken the improvement effects of baicalin on blood lipid metabolism and immune function in GDM rats. Conclusion Baicalin may improve blood lipid metabolism and immune function in GDM rats by inhibiting the RhoA/ROCK pathway.
Animals
;
Female
;
Diabetes, Gestational/metabolism*
;
Pregnancy
;
rho-Associated Kinases/genetics*
;
Flavonoids/pharmacology*
;
Rats
;
rhoA GTP-Binding Protein/genetics*
;
Lipid Metabolism/drug effects*
;
Male
;
Signal Transduction/drug effects*
;
Rats, Sprague-Dawley
;
Blood Glucose/metabolism*
;
Lipids/blood*
;
Tumor Necrosis Factor-alpha/blood*
;
rho GTP-Binding Proteins
7.Relationship between sterol carrier protein 2 gene and prostate cancer: Based on single-cell RNA sequencing combined with Mendelian randomization.
Jia-Xin NING ; Shu-Hang LUO ; Hao-Ran WANG ; Hui-Min HOU ; Ming LIU
National Journal of Andrology 2025;31(5):403-411
Objective: To investigate the relationship between the lipid metabolism-related gene sterol carrier protein 2(SCP2) and prostate cancer (PCa) from a multi-omics perspective using single-cell transcriptomes combined with Mendelian randomization. Methods: Single-cell transcriptome data of benign and malignant prostate tissues were obtained from GSE120716, GSE157703 and GSE141445 datasets, respectively. Integration, quality control and annotation were performed on the data to categorize the epithelial cells into high and low SCP2 expression groups, followed by further differential and trajectory analyses. Single nucleotide polymorphism (SNP) data for SCP2 expression quantitative trait loci (eQTL) were subsequently downloaded from Genotype-Tissue Expression (GTEx) and investigated from the PCa Society Cancer-Related Genomic Alteration Panel for the Investigation of Cancer-Related Alterations (PRACTICAL) to obtain PCa outcome data for Mendelian randomization analysis to validate the causal relationship between SCP2 and PCa. Results: High SCP2-expressing epithelial cells had higher energy metabolism and proliferation capacity with low immunotherapy response and metastatic tendency. Trajectory analysis showed that epithelial cells with high SCP2 expression may have a higher degree of malignancy, and SCP2 may be a key marker gene for differentiation of malignant epithelial cells in the prostate. Further Mendelian randomization results showed a significant causal relationship between SCP2 and PCa development (OR=1.045, 95% CI: 1.010 -1.083, P=0.011). Conclusion: By combining single-cell transcriptome and Mendelian randomization, the role of the lipid metabolism-related gene SCP2 in PCa development has been confirmed, and new targets and therapeutic directions for PCa treatment have been provided.
Humans
;
Prostatic Neoplasms/genetics*
;
Male
;
Mendelian Randomization Analysis
;
Polymorphism, Single Nucleotide
;
Quantitative Trait Loci
;
Single-Cell Analysis
;
Sequence Analysis, RNA
;
Carrier Proteins/genetics*
;
Transcriptome
;
Lipid Metabolism
8.Expression regulation of lipid metabolism gene ABHD5 in the mouse of testes.
Hao LIU ; Ze-Yu LI ; Kai-Cheng SHEN ; Yuan-di HUANG ; De-Xi SU ; Rui CHENG ; Ke XIONG ; Yi ZHI ; Wei-Bing LI
National Journal of Andrology 2025;31(6):492-498
OBJECTIVE:
To explore the expression regulation of lipid metabolism gene ABHD5 in testes.
METHODS:
Differential gene analysis was performed by integrating databases of TCGA and GTEx to identify the target gene ABHD5. The expression trends of ABHD5 gene in testicular carcinoma tissue were analyzed. Human testis single-cell atlases were obtained from the Human Protein Atlas and Male Health Atlas databases to determine the expression distribution of ABHD5 across different testicular cell types. Additionally, the GTEx database was utilized to visualize the expression pattern of ABHD5 in the testis, thereby enhancing the understanding of its transcriptional profile. The relationship between ABHD5 expression and age was assessed through integrated database analysis. Western blotting and immunofluorescence were performed to detect differential expressions of ABHD5 in testicular tissues of young and aged mice respectively.
RESULTS:
The TCGA database indicated that the expression of ABHD5 in human testicular carcinoma tissue was significantly lower than that in normal testicular tissue which showed a negative correlation with patient survival. ABHD5 was highly expressed in germ cells of the testis reveaked from Human Protein Atlas and Male Health Atlas databases. The stability of ABHD5 protein was crucial for testicular tissue, and its expression decreased with age. Furthermore, Western blot and immunofluorescence staining demonstrated that ABHD5 expression in the testicular tissue of aged mice was significantly lower than that in young mice.
CONCLUSION
ABHD5 plays an important role in testicular tissue, and may be inseparable from testicular tumors and reproductive aging. However, its mechanism of action remains to be further studied.
Male
;
Animals
;
Mice
;
Testis/metabolism*
;
Humans
;
Lipid Metabolism/genetics*
;
1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism*
;
Testicular Neoplasms/metabolism*
9.Modified Hu-Lu-Ba-Wan Alleviates Early-Stage Diabetic Kidney Disease via Inhibiting Interleukin-17A in Mice.
Min-Min GONG ; Meng-di ZHU ; Wen-Bin WU ; Hui DONG ; Fan WU ; Jing GONG ; Fu-Er LU
Chinese journal of integrative medicine 2025;31(6):506-517
OBJECTIVE:
To identify the underlying molecular mechanism of Modified Hu-Lu-Ba-Wan (MHW) in alleviating renal lesions in mice with diabetic kidney disease (DKD).
METHODS:
The db/db mice were divided into model group and MHW group according to a random number table, while db/m mice were settled as the control group (n=8 per group). The control and model groups were gavaged daily with distilled water [10 mL/(kg·d)], and the MHW group was treated with MHW [17.8 g/(kg·d)] for 6 weeks. After MHW administration for 6 weeks, indicators associated with glucolipid metabolism and urinary albumin were tested. Podocytes were observed by transmission electron microscopy. Kidney transcriptomics was performed after confirming therapeutic effects of MHW on DKD mice. The relevant target of MHW' effect in DKD was further determined by enzyme-linked immunosorbent assay, Western blot analysis, immunohistochemistry, and immunofluorescence staining.
RESULTS:
Compared with the model group, MHW improved glucose and lipid metabolism (P<0.05), and reduced lipid deposition in the kidney. Meanwhile, MHW reduced the excretion of urinary albumin (P<0.05) and ameliorated renal damage. Transcriptomic analysis revealed that the inflammation response, particularly the interleukin-17 (IL-17) signaling pathway, may be responsible for the effect of MHW on DKD. Furtherly, our results found that MHW inhibited IL-17A and alleviated early fibrosis in the diabetic kidney.
CONCLUSION
MHW ameliorated renal damage in DKD via inhibiting IL-17A, suggesting a potential strategy for DKD therapy.
Animals
;
Diabetic Nephropathies/genetics*
;
Interleukin-17/antagonists & inhibitors*
;
Drugs, Chinese Herbal/therapeutic use*
;
Male
;
Kidney/ultrastructure*
;
Podocytes/metabolism*
;
Mice
;
Albuminuria
;
Lipid Metabolism/drug effects*
;
Mice, Inbred C57BL
10.TMAO promotes disorders of lipid metabolism in psoriasis.
Rao LI ; Boyan HU ; Manyun MAO ; Wangqing CHEN ; Wu ZHU
Journal of Central South University(Medical Sciences) 2025;50(3):331-343
OBJECTIVES:
Psoriasis is associated with lipid metabolism disorders, but the underlying mechanisms remain unclear. This study aims to investigate the role of trimethylamine N-oxide (TMAO) in lipid metabolism dysregulation in psoriasis.
METHODS:
An imiquimod (IMQ)-induced psoriasis-like mouse model was used to assess lipid metabolism parameters, TMAO levels, and liver flavin monooxygenase 3 (FMO3) mRNA expression. Blood samples from healthy individuals and psoriatic patients were collected to measure serum TMAO levels and lipid profiles. To clarify the role of TMAO in the lipid metabolism disorder of mice with psoriasis model, exogenous TMAO, choline, or 3,3-dimethyl-1-butanol (DMB) were administered via intraperitoneal injections or diet in IMQ-treated mice. Liver tissues from the mouse models were subjected to RNA sequencing to identify TMAO-regulated signaling pathways.
RESULTS:
IMQ-induced psoriatic mice exhibited abnormal glucose, insulin, and lipid levels. IMQ treatment also downregulated the hepatic mRNA expression of glucose transporter 2 (Glut2) and silence information regulator 1 (Sirt1), while upregulating glucose transporter 4 (Glut4) and peroxisome proliferator-activated receptor gamma (PPARγ). Elevated serum TMAO levels were observed in both psoriatic patients and IMQ-treated mice. Additionally, liver FMO3 mRNA expression was increased in the psoriatic mouse model. In patients, TMAO levels positively correlated with Psoriasis Area and Severity Index (PASI) scores, serum triglyceride (TG), and total cholesterol (TC) levels. The intraperitoneal injection of TMAO exacerbated lipid dysregulation in IMQ-treated mice. A choline-rich diet further aggravated lipid abnormalities and liver injury in psoriatic mice, whereas DMB treatment alleviated these effects. RNA-Seq analysis demonstrated that TMAO upregulated hepatic microRNA-122 (miR-122), which may suppress the expression of gremlin 2 (GREM2), thus contributing to lipid metabolism disorder.
CONCLUSIONS
TMAO may promote lipid metabolism dysregulation in psoriasis by modulating the hepatic miR-122/GREM2 pathway.
Animals
;
Methylamines/blood*
;
Mice
;
Psoriasis/chemically induced*
;
Lipid Metabolism/drug effects*
;
Humans
;
Male
;
Liver/metabolism*
;
Female
;
Oxygenases/genetics*
;
Disease Models, Animal
;
Lipid Metabolism Disorders/etiology*
;
Adult
;
Mice, Inbred C57BL

Result Analysis
Print
Save
E-mail