1.Single-cell and spatial transcriptomics reveals an anti-tumor neutrophil subgroup in microwave thermochemotherapy-treated lip cancer.
Bingjun CHEN ; Huayang FAN ; Xin PANG ; Zeliang SHEN ; Rui GAO ; Haofan WANG ; Zhenwei YU ; Tianjiao LI ; Mao LI ; Yaling TANG ; Xinhua LIANG
International Journal of Oral Science 2025;17(1):40-40
Microwave thermochemotherapy (MTC) has been applied to treat lip squamous cell carcinoma (LSCC), but a deeper understanding of its therapeutic mechanisms and molecular biology is needed. To address this, we used single-cell transcriptomics (scRNA-seq) and spatial transcriptomics (ST) to highlight the pivotal role of tumor-associated neutrophils (TANs) among tumor-infiltrating immune cells and their therapeutic response to MTC. MNDA+ TANs with anti-tumor activity (N1-phenotype) are found to be abundantly infiltrated by MTC with benefit of increased blood perfusion, and these TANs are characterized by enhanced cytotoxicity, ameliorated hypoxia, and upregulated IL1B, activating T&NK cells and fibroblasts via IL1B-IL1R. In this highly anti-tumor immunogenic and hypoxia-reversed microenvironment under MTC, fibroblasts accumulated in the tumor front (TF) can recruit N1-TANs via CXCL2-CXCR2 and clear N2-TANs (pro-tumor phenotype) via CXCL12-CXCR4, which results in the aggregation of N1-TANs and extracellular matrix (ECM) deposition. In addition, we construct an N1-TANs marker, MX2, which positively correlates with better prognosis in LSCC patients, and employ deep learning techniques to predict expression of MX2 from hematoxylin-eosin (H&E)-stained images so as to conveniently guide decision making in clinical practice. Collectively, our findings demonstrate that the N1-TANs/fibroblasts defense wall formed in response to MTC effectively combat LSCC.
Humans
;
Neutrophils/metabolism*
;
Single-Cell Analysis
;
Lip Neoplasms/genetics*
;
Hyperthermia, Induced/methods*
;
Microwaves/therapeutic use*
;
Transcriptome
;
Carcinoma, Squamous Cell/immunology*
;
Tumor Microenvironment

Result Analysis
Print
Save
E-mail