1.Exploring Pathogenesis and Treatment Principles of Chronic Obstructive Pulmonary Disease Based on Spleen-mitochondria Correlation
Shiyi WANG ; Miao YU ; Xinyao HE ; Zi WANG ; Haijun LUAN ; Yibo SUN ; Haotong WANG ; Linlin WANG ; Lijian PANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):258-264
According to the Qi-blood-body fluid theory and the association between the spleen in visceral manifestation theory of traditional Chinese medicine (TCM) and mitochondria in modern cellular biology, it is proposed that the role of the spleen in generating and transforming Qi and blood is analogous to the energy-producing function of mitochondria—both serving as fundamental power sources for vital activities of the human body. The spleen governs transportation and transformation, playing a critical role in energy metabolism and the digestion and absorption of nutrients. Similarly, mitochondria are vital for maintaining physiological functions such as cellular energy supply, cell survival, and overall human metabolism. Furthermore, spleen deficiency is closely linked to mitochondrial dysfunction. Accordingly, mitochondrial energy conversion and substance metabolism are regarded as the microscopic essence of the spleen's function in transportation and transformation. Spleen deficiency and mitochondrial dysfunction contribute to the formation of pathological products such as phlegm-turbidity and blood stasis. This aligns with the pathogenesis of chronic obstructive pulmonary disease (COPD), with Qi deficiency as the root cause and phlegm-turbidity and blood stasis as the manifestations. Therefore, the integrative treatment of COPD should follow the therapeutic principle of invigorating the spleen and reinforcing healthy Qi, while also resolving phlegm and removing blood stasis to address both root cause and manifestations. This approach can improve the mitochondrial function, regulate energy metabolism, and reduce oxidative stress levels to alleviate COPD symptoms, slow down disease progression, and improve prognosis. By integrating the holistic concept of TCM with molecular mechanisms of modern medicine, this paper explores the pathogenesis and therapeutic principles of COPD from the spleen-mitochondria correlation. It not only provides a new direction for the modern development of TCM and the integration of Chinese and Western medicine but also offers a theoretical foundation for the integrated treatment of chronic, complex age-related diseases.
2.Exploring Pathogenesis and Treatment Principles of Chronic Obstructive Pulmonary Disease Based on Spleen-mitochondria Correlation
Shiyi WANG ; Miao YU ; Xinyao HE ; Zi WANG ; Haijun LUAN ; Yibo SUN ; Haotong WANG ; Linlin WANG ; Lijian PANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):258-264
According to the Qi-blood-body fluid theory and the association between the spleen in visceral manifestation theory of traditional Chinese medicine (TCM) and mitochondria in modern cellular biology, it is proposed that the role of the spleen in generating and transforming Qi and blood is analogous to the energy-producing function of mitochondria—both serving as fundamental power sources for vital activities of the human body. The spleen governs transportation and transformation, playing a critical role in energy metabolism and the digestion and absorption of nutrients. Similarly, mitochondria are vital for maintaining physiological functions such as cellular energy supply, cell survival, and overall human metabolism. Furthermore, spleen deficiency is closely linked to mitochondrial dysfunction. Accordingly, mitochondrial energy conversion and substance metabolism are regarded as the microscopic essence of the spleen's function in transportation and transformation. Spleen deficiency and mitochondrial dysfunction contribute to the formation of pathological products such as phlegm-turbidity and blood stasis. This aligns with the pathogenesis of chronic obstructive pulmonary disease (COPD), with Qi deficiency as the root cause and phlegm-turbidity and blood stasis as the manifestations. Therefore, the integrative treatment of COPD should follow the therapeutic principle of invigorating the spleen and reinforcing healthy Qi, while also resolving phlegm and removing blood stasis to address both root cause and manifestations. This approach can improve the mitochondrial function, regulate energy metabolism, and reduce oxidative stress levels to alleviate COPD symptoms, slow down disease progression, and improve prognosis. By integrating the holistic concept of TCM with molecular mechanisms of modern medicine, this paper explores the pathogenesis and therapeutic principles of COPD from the spleen-mitochondria correlation. It not only provides a new direction for the modern development of TCM and the integration of Chinese and Western medicine but also offers a theoretical foundation for the integrated treatment of chronic, complex age-related diseases.
3.Application of time series and machine learning models in predicting the trend of sickness absenteeism among primary and secondary school students in Shanghai
WANG Zhengzhong, ZHANG Zhe, ZHOU Xinyi, YUAN Linlin, ZHAI Yani, SUN Lijing, LUO Chunyan
Chinese Journal of School Health 2025;46(3):426-430
Objective:
To analyze the temporal variation patterns of sickness absenteeism among primary and secondary school students in Shanghai, so as to explore models suitable for predicting peaks and intensity of absenteeism rates.
Methods:
The seasonal and trend decomposition using loess (STL) method was used to analyze the seasonal and long term trend changes in sickness absenteeism among primary and secondary school students from September 1 in 2010 to June 30 in 2018, in Shanghai. A hierarchical clustering method based on Dynamic Time Warping (DTW) was employed to classify absenteeism symptoms with similar temporal patterns. Based on historical data, the study constructed and evaluated different time series algorithms and machine learning models to optimize the accuracy of predicting the trend of sickness absenteeism.
Results:
During the research period, the average new absenteeism rate due to illness was 16.86 per 10 000 person day for every academic year, and the trend of sickness absenteeism exhibited both seasonality and a long term upward trend, reaching its highest point in the 2017 academic year (22.47 per 10 000 person day). The symptoms of absenteeism were divided into three categories: high incidence in winter and spring (respiratory symptoms, fever and general discomfort, etc.), high incidence in summer (eye symptoms, nosebleeds, etc.) and those without obvious seasonality (skin symptoms, accidental injuries, etc.).The constructed time series models effectively predicted the trend of absenteeism due to illness, although the accuracy of predicting peak intensity was relatively low. Among them, the multi layer perceptron (MLP) model performed the best, with an root mean squared error (RMSE) of 8.96 and an mean absolute error (MAE) of 4.37, reducing 36.51% and 39.02% compared to the baseline model.
Conclusion
Time series models and machine learning algorithms could effectively predict the trend of sickness absenteeism, and corresponding prevention and control measures can be taken for absenteeism caused by different symptoms during peak periods.
4.Establishment of a Rat Model of Alzheimer's Disease by Introducing Human Triple Mutant APP Gene into Hippocampus via Brain Stereotactic Technology
Linlin XIAO ; Yixuan YANG ; Shanshan LI ; Lanshiyu LUO ; Siwei YIN ; Juming SUN ; Wei SHI ; Yiqiang OUYANG ; Xiyi LI
Laboratory Animal and Comparative Medicine 2025;45(3):269-278
Objective To establish a rat model of Alzheimer's disease (AD) expressing human triple mutant amyloid precursor protein (APP) in the hippocampus, and to provide a model for the study of disease mechanisms and drug development. Methods Twenty-four 12-week-old SPF-grade female SD rats were randomly divided into a blank control group, a virus control group and an experimental group, with eight rats in each group; among them, the experimental group received a stereotaxic injection of adeno-associated virus (AAV) carrying the human triple mutant APP and NanoLuc luciferase genes into the hippocampus. In vivo imaging was used to observe viral expression in the brains of rats in each group, the novel object recognition test was used to assess the recognition memory of the rats in each group, real-time fluorescent quantitative PCR was used to detect the expression level of the APP gene, HE staining was used to examine the brain histopathology, Nissl staining was used to assess the hippocampal lesions, and immunohistochemistry was used to detect the deposition of amyloid β-protein (Aβ). Results In vivo imaging showed that reporter fluorescence was detected in the brains of rats in both experimental and virus control groups. Fluorescence quantitative PCR showed that the expression level of the APP gene was significantly increased in the brains of rats in the experimental group (P<0.01). Novel object recognition test revealed that the recognition memory of rats in the experimental group was significantly reduced compared with that of the blank control group (P<0.01). Six months after recombinant AAV virus infection, HE staining and Nissl staining of brain tissues showed that the number of neurons and Nissl bodies in the CA1 region of the hippocampus in the experimental group was reduced and disorganized; immuno-histochemistry testing of the CA1 region of the hippocampus and the pyramidal cell layer of the experimental group revealed prominent brown deposits, indicating Aβ protein deposition. Conclusion The rat model successfully established by stereotaxic injection and AAV-mediated delivery of human triple mutant APP gene exhibits typical AD features, providing a valuable animal model for studying AD pathology and developing drug therapies targeting Aβ protein deposition.
5.Establishment of a Rat Model of Alzheimer's Disease by Introducing Human Triple Mutant APP Gene into Hippocampus via Brain Stereotactic Technology
Linlin XIAO ; Yixuan YANG ; Shanshan LI ; Lanshiyu LUO ; Siwei YIN ; Juming SUN ; Wei SHI ; Yiqiang OUYANG ; Xiyi LI
Laboratory Animal and Comparative Medicine 2025;45(3):269-278
Objective To establish a rat model of Alzheimer's disease (AD) expressing human triple mutant amyloid precursor protein (APP) in the hippocampus, and to provide a model for the study of disease mechanisms and drug development. Methods Twenty-four 12-week-old SPF-grade female SD rats were randomly divided into a blank control group, a virus control group and an experimental group, with eight rats in each group; among them, the experimental group received a stereotaxic injection of adeno-associated virus (AAV) carrying the human triple mutant APP and NanoLuc luciferase genes into the hippocampus. In vivo imaging was used to observe viral expression in the brains of rats in each group, the novel object recognition test was used to assess the recognition memory of the rats in each group, real-time fluorescent quantitative PCR was used to detect the expression level of the APP gene, HE staining was used to examine the brain histopathology, Nissl staining was used to assess the hippocampal lesions, and immunohistochemistry was used to detect the deposition of amyloid β-protein (Aβ). Results In vivo imaging showed that reporter fluorescence was detected in the brains of rats in both experimental and virus control groups. Fluorescence quantitative PCR showed that the expression level of the APP gene was significantly increased in the brains of rats in the experimental group (P<0.01). Novel object recognition test revealed that the recognition memory of rats in the experimental group was significantly reduced compared with that of the blank control group (P<0.01). Six months after recombinant AAV virus infection, HE staining and Nissl staining of brain tissues showed that the number of neurons and Nissl bodies in the CA1 region of the hippocampus in the experimental group was reduced and disorganized; immuno-histochemistry testing of the CA1 region of the hippocampus and the pyramidal cell layer of the experimental group revealed prominent brown deposits, indicating Aβ protein deposition. Conclusion The rat model successfully established by stereotaxic injection and AAV-mediated delivery of human triple mutant APP gene exhibits typical AD features, providing a valuable animal model for studying AD pathology and developing drug therapies targeting Aβ protein deposition.
6.Tumor-intrinsic PRMT5 upregulates FGL1 via methylating TCF12 to inhibit CD8+ T-cell-mediated antitumor immunity in liver cancer.
Jiao SUN ; Hongfeng YUAN ; Linlin SUN ; Lina ZHAO ; Yufei WANG ; Chunyu HOU ; Huihui ZHANG ; Pan LV ; Guang YANG ; Ningning ZHANG ; Wei LU ; Xiaodong ZHANG
Acta Pharmaceutica Sinica B 2025;15(1):188-204
Protein arginine methyltransferase 5 (PRMT5) acts as an oncogene in liver cancer, yet its roles and in-depth molecular mechanisms within the liver cancer immune microenvironment remain mostly undefined. Here, we demonstrated that disruption of tumor-intrinsic PRMT5 enhances CD8+ T-cell-mediated antitumor immunity both in vivo and in vitro. Further experiments verified that this effect is achieved through downregulation of the inhibitory immune checkpoint molecule, fibrinogen-like protein 1 (FGL1). Mechanistically, PRMT5 catalyzed symmetric dimethylation of transcription factor 12 (TCF12) at arginine 554 (R554), prompting the binding of TCF12 to FGL1 promoter region, which transcriptionally activated FGL1 in tumor cells. Methylation deficiency at TCF12-R554 residue downregulated FGL1 expression, which promoted CD8+ T-cell-mediated antitumor immunity. Notably, combining the PRMT5 methyltransferase inhibitor GSK591 with PD-L1 blockade efficiently inhibited liver cancer growth and improved overall survival in mice. Collectively, our findings reveal the immunosuppressive role and mechanism of PRMT5 in liver cancer and highlight that targeting PRMT5 could boost checkpoint immunotherapy efficacy.
7.BRD4 regulates m6A of ESPL1 mRNA via interaction with ALKBH5 to modulate breast cancer progression.
Haisheng ZHANG ; Linlin LU ; Cheng YI ; Tao JIANG ; Yunqing LU ; Xianyuan YANG ; Ke ZHONG ; Jiawang ZHOU ; Jiexin LI ; Guoyou XIE ; Zhuojia CHEN ; Zongpei JIANG ; Gholamreza ASADIKARAM ; Yanxi PENG ; Dan ZHOU ; Hongsheng WANG
Acta Pharmaceutica Sinica B 2025;15(3):1552-1570
The interaction between m6A-methylated RNA and chromatin modification remains largely unknown. We found that targeted inhibition of bromodomain-containing protein 4 (BRD4) by siRNA or its inhibitor (JQ1) significantly decreases mRNA m6A levels and suppresses the malignancy of breast cancer (BC) cells via increased expression of demethylase AlkB homolog 5 (ALKBH5). Mechanistically, inhibition of BRD4 increases the mRNA stability of ALKBH5 via enhanced binding between its 3' untranslated regions (3'UTRs) with RNA-binding protein RALY. Further, BRD4 serves as a scaffold for ubiquitin enzymes tripartite motif containing-21 (TRIM21) and ALKBH5, resulting in the ubiquitination and degradation of ALKBH5 protein. JQ1-increased ALKBH5 then demethylates mRNA of extra spindle pole bodies like 1 (ESPL1) and reduces binding between ESPL1 mRNA and m6A reader insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3), leading to decay of ESPL1 mRNA. Animal and clinical studies confirm a critical role of BRD4/ALKBH5/ESPL1 pathway in BC progression. Further, our study sheds light on the crosstalks between histone modification and RNA methylation.
8.A real-world study of the clinical application of the Paris system for reporting urinary cytology in cancer hospital
Huan ZHAO ; Zhihui ZHANG ; Huiqin GUO ; Na WEI ; Haiyue MA ; Linlin ZHAO ; Yue SUN ; Cong WANG ; Xinxiang CHANG ; Xingang BI ; Nianzeng XING
Chinese Journal of Oncology 2024;46(7):703-709
Objectives:To evaluate the clinical value of the Paris system for reporting urinary cytology (TPS) in the diagnosis of urothelial carcinoma (UC).Methods:A total of 1 744 cytological diagnostic records (from 751 cases) were collected retrospectively. All specimens were voided urines and histopathology as the gold standard. The sensitivity and specificity of urinary cytological diagnosis of UC and risk of high grade malignant (ROHM) in each diagnostic category were compared.Results:There were 360 cases with histopathology. The percentage of negative for high-grade urothelial carcinoma (NHGUC) was 30.1% (226/751), atypical urothelial cells (AUC) was 29.8% (224/751), suspicious for high-grade urothelial carcinoma (SHGUC) was 16.8% (126/751), high grade urothelial carcinoma (HGUC) was 21.2% (159/751), and non-urothelial malignancy (NUM) was 2.1% (16/751). The histpathologic ROHM corresponding to each cytological diagnosis category were 27.3% for NHGUC, 32.7% for AUC, 74.7% for SHGUC, 96.6% for HGUC and 100.0% for NUM, respectively. ROHM of SHGUC was significantly higher than that of AUC group, and the difference between the two groups was statistically significant ( P<0.001). ROHM of HGUC group was significantly higher than that of SHGUC group, and the difference was statistically significant ( P<0.001). With SHGUC as the cut-off value, the sensitivity and specificity of cytological diagnosis of HGUC were 76.7% (165/215) and 85.7% (18/21), and with HGUC as the cut-off value, the sensitivity and specificity of cytological diagnosis of HGUC were 53.0% (114/215) and 100.0% (21/21), respectively. Conclusions:Urine cytology has high sensitivity and specificity in the diagnosis of HGUC. The malignant risk of TPS varies with different diagnosis category. The high malignant risk population in cancer hospital leads to the relatively high malignant proportion and ROHM in each diagnosis category. Urinary cytology TPS reporting system is helpful to clinical management and has good clinical application value.
9.Application of 9-gene panel in assisting fine needle aspiration cytology to diagnose thyroid cancer
Yanqi ZHANG ; Huan ZHAO ; Linlin ZHAO ; Yue SUN ; Cong WANG ; Zhihui ZHANG ; Tian QIU ; Xin YANG ; Ting XIAO ; Huiqin GUO
Chinese Journal of Oncology 2024;46(11):1049-1057
Objective:To evaluate the utility of the 9-gene panel as a differential diagnostic method for thyroid nodules within determinate cytological diagnosis and as a parallel diagnostic method for thyroid fine-needle aspiration (FNA) cytology.Methods:579 liquid-based cytology samples from 544 patients were collected after thyroid FNA diagnosis in our hospital from December 2014 to April 2021. Mutations at any site of 9 genes, namely, BRAF, NRAS, HRAS, KRAS, GNAS, RET, TERT, TP53, and PIK3CA as recorded by the Catalogue of Somatic Mutations in Cancer (COSMIC), were analyzed by next-generation sequencing. Taking postoperative histopathology and cytology results with definite benign or malignant diagnosis as the gold standard, the diagnostic efficacy of the 9-gene panel as a reclassified method for thyroid nodules with indeterminate cytological diagnosis and as a parallel diagnostic method for thyroid FNA cytology were evaluated and compared with that of the BRAF V600E single-gene detection method.Results:Of the 579 thyroid nodules, 196 (33.85%) were Bethesda Ⅱ, 11 (1.90%) were Bethesda Ⅲ, 31 (5.35%) were Bethesda Ⅳ, 27 (4.66%) were Bethesda Ⅴ, and 314 (54.23%) were Bethesda Ⅵ, as diagnosed by thyroid FNA cytology. Among these 579 thyroid nodules, 275 were tested positive for 9-gene mutations, with a mutation rate of 47.5%. Of the 329 thyroid nodules surgically removed, 30 (9.12%) were benign, 5 (1.52%) were borderline, and 294 (89.36%) were malignant. Regarding borderline nodules as malignant nodules, the mutation rates of the 9 genes in the 299 malignant thyroid nodules from high to low were BRAF 62.21% (186/299), NRAS 5.02% (15/299), HRAS 1.00% (3/299), PIK3CA 0.67% (2/299), GNAS 0.67% (2/299), KRAS 0.33% (1/299), TP53 0.33% (1/299), TERT 0.33% (1/299) and RET 0.00% (0/299). The malignant risks of the 9 genes from high to low were BRAF 100% (186/186), PIK3CA 100.00% (2/2), GNAS 100.00% (2/2), TERT 100.00% (1/1), TP53 100.00% (1/1), NRAS 78.95% (15/19), HRAS 75.00% (3/4), and KRAS 50.00% (1/2). For thyroid nodules of Bethesda Ⅲ-Ⅳ (indeterminate diagnosis), the sensitivity (SN) of the 9-gene panel in diagnosing thyroid cancer is 34.48% (10/29), the specificity (SP) is 61.54% (8/13), and the accuracy is 42.86% (18/42); whereas the SN of the BRAF V600E detection method is 0%. Therefore, the diagnostic efficiency of the 9-gene panel is significantly better than that of BRAF V600E single gene detection. For thyroid nodules of Bethesda Ⅱ-Ⅵ, the SN of the 9-gene panel in diagnosing thyroid cancer was 68.83% (254/369), the SP was 90.00% (189/210), the accuracy was 76.51% (443/579), and the area under the curve (AUC) was 0.79; whereas the SN of BRAF V600E single-gene detection in diagnosing thyroid cancer was 63.69% (235/369), the SP was 99.52% (209/210), the accuracy was 76.68% (444/579), and the AUC was 0.82. The SP of BRAF V600E detection is higher than that of the 9-gene panel ( P<0.01), but there is no significant difference in SN, accuracy (both P>0.05), and AUC ( Z=0.85, P=0.396) between them. Gene mutations indicating poor prognosis were detected in 4 nodules of papillary thyroid carcinoma and 1 nodules of follicular thyroid carcinoma, including 2 nodules with TERT and BRAF V600E co-mutations, 1 nodule with TP53 mutation, and 2 nodules with PIK3CA mutation. Conclusions:As a reclassified method for thyroid lesions with indeterminate cytological diagnosis, the 9-gene panel is better than BRAF V600E single gene detection. As a parallel diagnostic method of thyroid FNA cytology, the 9-gene panel has similar diagnostic efficacy as BRAF V600E single-gene detection. The 9-gene panel can detect individual cases with gene mutations indicating poor prognosis. The identification of patients with these special gene mutations has certain implications for the clinical management of them.
10.Original Article Association between Exposure of Rare Earth Elements and Outcomes of In Vitro Fertilization-Embryo Transfer in Beijing
Wang YUTONG ; Li JING ; Xu SHIRONG ; Lin SHENGLI ; Hou ZHENCHEN ; Wang LINLIN ; Huang YALI ; Sun YUE ; Guo WEI ; Yan LAILAI ; Wang YING ; Tian CHAN
Biomedical and Environmental Sciences 2024;37(8):876-886
Objective The study aimed to investigate the impact of rare earth elements(REEs)exposure on pregnancy outcomes of in vitro fertilization-embryo transfer(IVF-ET)by analyzing samples from spouses. Methods A total of 141 couples were included.Blood and follicular fluid from the wives and semen plasma from the husbands,were analyzed for REEs using inductively coupled plasma mass spectrometry(ICP-MS).Spearman's correlation coefficients and the Mann-Whitney U test were used to assess correlations and compare REE concentrations among three types of samples,respectively.Logistic models were utilized to estimate the individual REE effect on IVF-ET outcomes,while BKMR and WQS models explored the mixture of REE interaction effects on IVF-ET outcomes. Results Higher La concentration in semen(median 0.089 ng/mL,P=0.03)was associated with a lower fertilization rate.However,this effect was not observed after artificial selection intervention through intracytoplasmic sperm injection(ICSI)(P=0.27).In semen,the REEs mixture did not exhibit any significant association with clinical pregnancy. Conclusion Our study revealed a potential association between high La exposure in semen and a decline in fertilization rate,but not clinical pregnancy rate.This is the first to report REEs concentrations in follicular fluid with La,Ce,Pr,and Nd found at significantly lower concentrations than in serum,suggesting that these four REEs may not accumulate in the female reproductive system.However,at the current exposure levels,mixed REEs exposure did not exhibit reproductive toxicity.


Result Analysis
Print
Save
E-mail