1.A study on the coercive experience of involuntarily hospitalized adolescents with mental disorders
Lingyu LI ; Xinyi LIU ; Jiawei SHI ; Gen CHENG ; Haiou ZOU
Chinese Medical Ethics 2025;38(2):232-240
ObjectiveTo explore the coercive experience of involuntarily hospitalized adolescents with mental disorders during the admission process and hospitalization, providing references for formulating targeted nursing interventions. MethodsSemi-structured interviews were conducted with 15 involuntarily hospitalized adolescents with mental disorders selected from October to December 2023, and the themes were summarized and extracted by content analysis. ResultsA total of 3 themes and 10 sub-themes were extracted, which were used to elaborate the essential contents, causes, and improvement methods of coercive experience. These encompassed the multi-dimensional content of coercive experience (complex emotional experience, different physical sensations, and contradictory cognitive evaluation), the multi-faceted causes of coercive experience (insufficient personal preparation, inadequate parental communication, and strict medical management system), as well as the phased improvement of coercive experience (adequate communication before hospitalization, patient notification before coercive intervention, respecting for demands during coercive intervention, and comforting explanation after coercive intervention). ConclusionThe essential content of the coercive experience of involuntarily hospitalized adolescents with mental disorders is complex and has various causes, which require cooperation from multiple parties to improve. Therefore, parents should respect the expression of their children’s self-will, and medical staff should respect patients’ autonomy, establishing a protection-constrained doctor-patient relationship model and collaborating to reduce the use of coercive interventions, to improve the overall medical satisfaction of adolescents with mental disorders.
2.Experience of Using Charcoal-Processed Traditional Chinese Medicine in the Treatment of Gynecological Hemorrhagic Disorders
Xiaolan WU ; Zhaoling YOU ; Guiyun WANG ; Kailing WANG ; Xiaojuan YE ; Lingyu LIAO ; Yueheng LI ; Huiping LIU
Journal of Traditional Chinese Medicine 2025;66(3):308-311
Charcoal-processed traditional Chinese herbal medicine has various therapeutic effects, including astringing, hemostasis, anti-diarrhea, clearing heat, tonifying, and warming the interior. This paper summarizes the clinical application features, compatible experiences, dosages, and precautions for over 20 types of charcoal-processed herbal medicine in the treatment of gynecological bleeding disorders caused by dysfunctions such as dysfunctional uterine bleeding, endometriosis, uterine incision pseudocavity, and vaginal bleeding resulting from threatened miscarriage. The charcoal-processed herbal medicine include Huangqin (Scutellaria Baicalensis) Charcoal, Dahuang (Rheum Palmatum) Charcoal, Cebai (Platycladus Orientalis) Charcoal, Diyu (Sanguisorba Officinalis) Charcoal, Daji (Cirsium Setosum) Charcoal, Xiaoji (Cirsium Japonicum) Charcoal, Shengdi (Rehmannia Glutinosa) Charcoal, Aiye (Artemisia Argyi) Charcoal, Paojiang (Zingiber Officinale) Charcoal, Xuduan (Dipsacus Asper) Charcoal, Duzhong (Eucommia Ulmoides) Charcoal, Qiancao (Rubia Cordifolia) Charcoal, Puhuang (Typha Angustifolia) Charcoal, Shanzha (Crataegus Pinnatifida) Charcoal, Jingjie (Schizonepeta Tenuifolia) Charcoal, Xueyu (Carthamus Tinctorius) Charcoal, Zonglyu (Areca Catechu) Charcoal, Wumei (Prunus Mume) Charcoal, Shudahuang (Rheum Officinale) Charcoal, Lianfang (Nymphaea Alba) Charcoal, Mianmaguanzhong (Clematis Armandii) Charcoal, and Oujie (Nelumbo Nucifera) Charcoal.
3.MiRSNP in MGMT 3′ untranslated region regulates low-dose radiation-induced senescence in lung cells
Lingyu ZHANG ; Yashi CAI ; Huixian LI ; Min ZHANG ; Changyong WEN ; Weixu HUANG ; Huifeng CHEN ; Jianming ZOU
China Occupational Medicine 2025;52(1):25-32
Objective To investigate the role of the O-6-methylguanine-DNA methyltransferase (MGMT) gene-3′ untranslated region (UTR) microRNA-associated single nucleotide polymorphism (miRSNP) (rs7896488 G>A) in affecting miR-4297-targeted modulation of MGMT in senescence of lung cells with polymorphic genotypes induced by fractionated low dose ionizing radiation (LDIR). Methods i) MiRSNPs were predicted and screened using bioinformatics, and DNA from two types of lung cells, A549 cells and human bronchial epithelioid cells (HBE cells), was extracted for target gene sequencing. After co-transfection of pGL3c-MGMT-3′UTR-rs7896488 G>A reporter gene recombinant plasmid, pRL-TK Vector with micrON mimic NC #22 or micrON hsa-miR-4297 mimic (set up as the mimic NC group and the miR-4297 mimic group) in these two types of lung cells, dual luciferase reporter gene assay was performed. The relative expression of MGMT mRNA was detected by real-time fluorescence quantitative polymerase chain reaction, and the relative expression of MGMT protein was detected by Western blotting. ii) These two types of lung cells were randomly divided into the control group and irradiation group, which received either 0 or 100 mGy X-rays irradiation seven times. After irradiation, the cells were transfected with either micrON mimic NC #22 or micrON hsa-miR-4297 mimic, resulting in mimic NC + control group, miR-4297 mimic + control group, mimic NC + irradiation group, and miR-4297 mimic + irradiation group. Cells were collected for senescence-associated-β-galactosidase (SA-β-Gal) staining, and the relative expression of matrix metalloproteinase-9 (MMP-9) and chemokine (C-X-C motif) ligand-1 (CXCL-1) proteins was detected via Western blotting. Results i) The rs7896488 G>A was the miRSNP located in the conserved binding region targeted by miR-4297 in the MGMT gene 3′UTR. A549 cells were the rs7896488 GG wild-type homozygous genotype, while HBE cells were the rs7896488 GA heterozygous mutant genotype. In the miR-4297 mimic group, A549 and HBE cells carrying the rs7896488 G allele showed significantly lower dual-luciferase activity compared with that in the mimic NC group (both P<0.01). However, there was no significant difference in dual-luciferase activity between the two groups in both A549 and HBE cells carrying the rs7896488 A allele (both P>0.05). The relative expression levels of MGMT mRNA and MGMT protein of A549 cells in the miR-4297 mimic group were lower than those in the mimic NC group (both P<0.05). However, there was no significant difference in MGMT mRNA and MGMT protein of HBE cells between these two groups (both P>0.05). ii) The relative activity of SA-β-Gal and the relative expression of MMP-9 and CXCL-1 proteins of A549 cells in the miR-4297 mimic+irradiation group were higher than those in the mimic NC + control group, the miR-4297 mimic + control group, and the mimic NC + irradiation group (all P<0.05). The relative activity of SA-β-Gal and the relative expression of MMP-9 and CXCL-1 proteins of HBE cells in the miR-4297 mimic + irradiation group were higher than those in the mimic NC + control group and the miR-4297 mimic + control group (all P<0.05), while there was no significant difference compared with those in the mimic NC + irradiation group (all P>0.05). Conclusion MGMT-3′UTR-miRSNP rs7896488 G>A plays a role in LDIR-induced senescence of lung cells with different polymorphic genotypes by affecting miR-4297-targeted regulation of MGMT.
4.Effects of fractionated low-dose ionizing radiation on differentially expressed genes in ferroptosis of human bronchial epithelial cells
Min ZHANG ; Lingyu ZHANG ; Yashi CAI ; Huixian LI ; Yanting CHEN ; Guanyou CHEN ; Xin LAN ; Changyong WEN ; Weixu HUANG ; Jianming ZOU ; Huifeng CHEN
Chinese Journal of Radiological Health 2025;34(3):310-317
Objective To investigate the effects of fractionated low-dose ionizing radiation (LDIR) on the ferroptosis in human bronchial epithelial (HBE) cells as well as the associated differentially expressed genes (DEGs), biological processes, and signaling pathways. Methods HBE cells were exposed to different single doses of X-ray irradiation (0, 25, 50, 75, and 100 mGy) for 24, 48, and 72 h, respectively. The change in cell viability was detected by MTT assay. Cells were irradiated with 0, 25, 50, and 100 mGy X-rays 5 times, with 48 h between each irradiation and a dose rate of 50 mGy/min. Cells were harvested 24 h after irradiation for the measurement of the expression of ferroptosis-related genes SLC7A11 and GPX4 at the mRNA and protein levels, cellular iron content, and the expression of FTH1 and FTL mRNAs. High-throughput sequencing was used to screen for the DEGs in each dose group, followed by Gene Ontology-Biological Process (GO-BP) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Set Enrichment Analysis (GSEA). Results Compared with the control group, single-dose LDIR significantly increased cell proliferation at 75 mGy after 24 h (P < 0.05), at 50, 75, and 100 mGy after 48 h (P < 0.05), and at 75 and 100 mGy after 72 h (P < 0.05). Compared with the control group, at the end of the fifth fractionated LDIR, SLC7A11 and GPX4 mRNAs decreased at all doses (P < 0.05), SLC7A11 protein decreased at all doses, GPX4 protein decreased at 25 and 100 mGy, iron content increased at all doses, and FTH1 and FTL mRNAs decreased at all doses (P< 0.05). Sequencing analysis identified 248, 30, and 291 DEGs and 10, 2, and 9 ferroptosis-associated genes at the three doses compared to the control. Gene Ontology-Biological Process analysis showed that DEGs were mainly enriched in biological processes such as response to lipids, cell death, and response to unfolded proteins. Kyoto Encyclopedia of Genes and Genomes analysis showed that DEGs were mainly enriched in the JAK-STAT signaling pathway, lipids and atherosclerosis, ferroptosis, protein processing in the endoplasmic reticulum, and FoxO signaling pathway. Gene set enrichment analysis showed that DEGs were mainly enriched in ferroptosis, fatty acid degradation, and glutathione metabolism. Conclusion Fractionated low-dose radiation induced ferroptosis in HBE cells, and DEGs were predominantly enriched in biological processes and signaling pathways related to inflammation, ferroptosis, and endoplasmic reticulum stress.
5.Preparation,characterization and tissue distribution of polyethylene glycol-modified Curcumin solid lipid nanoparticle inhalable micropowder
Nan LI ; Zi WANG ; Di HAO ; Lingyu KONG ; Xu LI
China Pharmacy 2025;36(19):2387-2392
OBJECTIVE To prepare polyethylene glycol (PEG)-modified flower lactose (FL) loaded Curcumin (Cur) solid lipid nanoparticle (SLN) inhalable micropowder (referred to as “PEG-Cur-FL”). METHODS PEG-Cur-FL was prepared by the solvent emulsification diffusion low-temperature solidification method, and its encapsulation efficiency, drug loading capacity, powder properties, aerodynamic particle size, in vitro deposition properties, and in vitro release characteristics were characterized. The mice were divided into Cur-SLN-FL (unmodified with PEG) group and PEG-Cur-FL group, with 55 mice in each group. Both groups of mice were given a single inhalation of 5 mg/kg (calculated as Cur) of the corresponding drug micropowder through an air tube. At 0.25, 0.5, 1, 2, 4, 6, 8, 12, 24, 48 and 72 hours after administration, eyeballs were removed to collect blood and tracheal, lung, liver and kidney tissues were separated. The mass concentration of Cur in mouse plasma and various tissue samples was measured, and the tissue distribution and retention of the drug were analyzed. RESULTS The encapsulation efficiency and drug loading capacity of PEG-Cur-FL were (86.2±1.8)% and (4.2±0.2)%, respectively; the bulk density and tap density were (0.24±0.01) g/cm3 and (0.30±0.01) g/cm3, respectively; the aerodynamic particle size was (2.74±0.64) μm; the in vitro effective site deposition rate (secondary drug deposition rate) was (45.07±2.79)%. Compared with Cur raw materials, Cur-SLN- FL and PEG-Cur-FL had sustained release effects under both leakage and non-leakage conditions, and PEG-Cur-FL had a smoother sustained release in artificial lung fluid, with release characteristics consistent with the Weibull model. The results of in vivo distribution showed that the drug concentration in the lung tissue of PEG-Cur-FL group was significantly lower than that of Cur- SLN-FL group during the same period after 1 hour of administration, while the drug concentration in the lung tissue at 4 to 48 hours was significantly higher than that of Cur-SLN-FL group during the same period (P<0.05); the plasma drug concentrations of the PEG-Cur-FL group at all time points from 0.25 to 12 hours were significantly lower than those of the Cur-SLN-FL group during the same period (P<0.05), and the drug concentrations in liver and kidney tissues were also lower than those of the Cur-SLN-FL group during the same period (P<0.05). CONCLUSIONS PEG-Cur-FL is prepared successfully; the inhalable micropowder has good inhalability and release performance; after administration through the trachea, the effective concentration of Cur in lung tissue can be increased, while reducing its plasma drug concentration and drug distribution concentration in non-target organs.
6.Application Practice of AI Empowering Post-discharge Specialized Disease Management in Postoperative Rehabilitation of the Lung Cancer Patients Undergoing Surgery.
Mei LI ; Hongbing ZHANG ; Chunqiu XIA ; Yuqi ZHANG ; Huihui JI ; Yi SHI ; Liran DUAN ; Lingyu GUO ; Jinghao LIU ; Xin LI ; Ming DONG ; Jun CHEN
Chinese Journal of Lung Cancer 2025;28(3):176-182
BACKGROUND:
Lung cancer is the leading malignancy in China in terms of both incidence and mortality. With increased health awareness and the widespread use of low-dose computed tomography (CT), early diagnosis rates have been steadily improving. Surgical intervention remains the primary treatment option for early-stage lung cancer, and video-assisted thoracoscopic surgery (VATS) has become a common approach due to its minimal invasiveness and rapid recovery. However, post-discharge recovery remains incomplete, underscoring the importance of postoperative care. Traditional follow-up methods, lack standardization, consume significant medical resources, and increase the burden of the patients. Artificial intelligence (AI)-driven disease management platforms offer a novel solution to optimize postoperative follow-up. This study followed 463 lung cancer surgery patients using an AI-based platform, aiming to identify common postoperative issues, propose solutions, improve quality of life, reduce recurrence-related costs, and promote AI integration in healthcare.
METHODS:
Using the AI disease management platform, this study integrated educational videos, collaboration between healthcare teams and AI assistants, daily health logs, health assessment forms, and personalized interventions to monitor postoperative recovery. The postoperative rehabilitation status of the patients was assessed by the Leicester Cough Questionnaire (LCQ-MC). Two independent t-test and one-way ANOVA were used to analyze the causes of postoperative cough in lung cancer.
RESULTS:
Most issues occurred within 7 d post-discharge, significantly declined on 14 d post-discharge. Factors such as gender, smoking history, and surgical approaches were found to influence cough recovery. The incidence of cough on 7 d post-discharge in females was higher than that in males (P<0.01), while the incidence of cough on 14 d post-discharge in elderly patients was lower than that in young patients (P=0.03). The AI-based platform effectively addressed cough, pain, and sleep disturbances through phased interventions.
CONCLUSIONS
The AI-based platform significantly enhanced postoperative management efficiency and the self-care capabilities of the patients, particularly in phased cough management. Future integration with wearable devices could enable more precise and personalized postoperative care, further advancing the application of AI technology across multidisciplinary healthcare domains.
Humans
;
Lung Neoplasms/rehabilitation*
;
Male
;
Female
;
Middle Aged
;
Aged
;
Patient Discharge
;
Artificial Intelligence
;
Adult
;
Postoperative Care
;
Postoperative Period
;
Disease Management
;
Quality of Life
7.YOD1 regulates microglial homeostasis by deubiquitinating MYH9 to promote the pathogenesis of Alzheimer's disease.
Jinfeng SUN ; Fan CHEN ; Lingyu SHE ; Yuqing ZENG ; Hao TANG ; Bozhi YE ; Wenhua ZHENG ; Li XIONG ; Liwei LI ; Luyao LI ; Qin YU ; Linjie CHEN ; Wei WANG ; Guang LIANG ; Xia ZHAO
Acta Pharmaceutica Sinica B 2025;15(1):331-348
Alzheimer's disease (AD) is the major form of dementia in the elderly and is closely related to the toxic effects of microglia sustained activation. In AD, sustained microglial activation triggers impaired synaptic pruning, neuroinflammation, neurotoxicity, and cognitive deficits. Accumulating evidence has demonstrated that aberrant expression of deubiquitinating enzymes is associated with regulating microglia function. Here, we use RNA sequencing to identify a deubiquitinase YOD1 as a regulator of microglial function and AD pathology. Further study showed that YOD1 knockout significantly improved the migration, phagocytosis, and inflammatory response of microglia, thereby improving the cognitive impairment of AD model mice. Through LC-MS/MS analysis combined with Co-IP, we found that Myosin heavy chain 9 (MYH9), a key regulator maintaining microglia homeostasis, is an interacting protein of YOD1. Mechanistically, YOD1 binds to MYH9 and maintains its stability by removing the K48 ubiquitin chain from MYH9, thereby mediating the microglia polarization signaling pathway to mediate microglia homeostasis. Taken together, our study reveals a specific role of microglial YOD1 in mediating microglia homeostasis and AD pathology, which provides a potential strategy for targeting microglia to treat AD.
9.Mechanism of protopanaxatriol attenuating paclitaxel resistance in MDA-MB-231 cells
Lingyu LI ; Qianyun YE ; Yan LI ; Li HAN ; Panpan WANG ; Ronghua ZHANG
Chinese Journal of Pathophysiology 2024;40(5):796-805
AIM:To investigate the effect of protopanaxatriol(PPT)on the drug resistance of paclitaxel(PTX)-resistant human breast cancer MDA-MB-231 cells(MB231-PR cells).METHODS:The MB231-PR cells were constructed as cell models.They were treated with PPT,and incubated for a certain period of time according to the experi-mental settings.CellTiter-Glo was used to determine the viability of MB231-PR cells and MDA-MB-231 parental cells(MB231-PT cells).The change of sub-G1 phase was detected by flow cytometry.Western blot was used to evaluate the apoptosis-related proteins,such as cleaved caspase-3,cleaved poly(ADP-ribose)polymerase(PARP),B-cell lymphoma-2(Bcl-2),Bcl-2-associated X protein(Bax)and survivin.The activity of nuclear factor-κB(NF-κB)was detected by lu-ciferase reporter assay and immunofluorescence assay.The mRNA expression levels of interleukin-6(IL-6),IL-8,chemo-kine CXC motif ligand 1(CXCL1),chemokine CC motif ligand 2(CCL2),CD44,NANOG,octamer-binding transcrip-tion factor 4(OCT4),sex-determining region Y-box 2(SOX2)and aldehyde dehydrogenase 1(ALDH1)were detected by qPCR.The protein levels of IL-6 and IL-8 were measured by ELISA.Tumor sphere formation assay was used to evaluate the characteristics of stem cells.RESULTS:(1)The viability of MB231-PR cells was suppressed by PPT treatment in a dose-dependent manner compared with MB231-PT cells(P<0.01).Besides,the viability of MB231-PR cells was de-creased after combined treatment with PPT and PTX(P<0.01),the accumulation of sub-G1 phase was induced(P<0.01),the ratio of Bax/Bcl-2 was elevated(P<0.01),and the protein levels of survivin,cleaved PARP and cleaved cas-pase-3 were increased(P<0.05).(2)After PPT treatment combined with PTX,the mRNA expression of inflammatory cy-tokines(IL-6,IL-8,CXCL1 and CCL2)and cancer stem cell-related markers(OCT4,SOX2,NANOG,ALDH1 and CD44)was reduced(P<0.05),and the protein levels of IL-6 and IL-8 were decreased(P<0.01).The activity of NF-κB in MB231-PR cells was suppressed(P<0.05),and the growth of tumor spheres from MB231-PR cells was damaged(P<0.05).(3)Immunofluorescence assay showed that PTX induced nuclear p-p65 expression,but this effect was attenuated by PPT.CONCLUSION:Combined treatment with PPT and PTX could attenuate PTX resistance of MB231-PR cells by inhibiting inflammatory cytokines and cancer stem cells.
10.Research on the establishment of capability evaluation system and training and exercise models of the national emergency medical rescue team
Dan ZHOU ; Jian YIN ; Caiping GAO ; Lingyu LI ; Liming ZHAO ; Zhongmin LIU
Shanghai Journal of Preventive Medicine 2024;36(3):262-268
ObjectiveTo improve the response capabilities to disasters and prevent major epidemics, it is of practical use to study the capability evaluation system of the national emergency medical rescue team that combines theoretical training and practical exercises, to enhance the overall quality of the teams. MethodsFirst, a capability assessment system for the national emergency medical rescue team was constructed based on the INSARAG External Classification (IEC) standards of the national emergency medical rescue team. Then, based on the outcome based education (OBE) concept, we conducted innovative research on the curriculum design and exercise programs for team building and member training. Finally, an empirical analysis was conducted on the effectiveness of the evaluation system and training exercises based on the statistical analysis of the comprehensive quality evaluation of the Shanghai national emergency medical rescue team from 2020 to 2023, as well as the empirical analysis of the rescue exercise on the Cruise of spectrum. ResultsBased on the linear regression analysis of each core competency indicators, the five core competencies in the evaluation system, including rescue skills, medical and health knowledge, disaster coping ability, team cooperation ability, and mental resilience training, were positively correlated with the cumulative number of trainings (r=0.71, r=0.76, r=0.81, r=0.84, r=0.96,all P<0.05), indicating that the training was effective and the course design was reasonable. Empirical cases showed that the three-dimensional rescue drill model had remarkable results in the actual combat application and ability improvement of team members. ConclusionThe training courses and drills designed based on the three-level assessment system are effective in improving the comprehensive capabilities of the national emergency medical rescue team.

Result Analysis
Print
Save
E-mail