1.Application of CRISPR/Cas System in Precision Medicine for Triple-negative Breast Cancer
Hui-Ling LIN ; Yu-Xin OUYANG ; Wan-Ying TANG ; Mi HU ; Mao PENG ; Ping-Ping HE ; Xin-Ping OUYANG
Progress in Biochemistry and Biophysics 2025;52(2):279-289
Triple-negative breast cancer (TNBC) represents a distinctive subtype, characterized by the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). Due to its high inter-tumor and intra-tumor heterogeneity, TNBC poses significant chanllenges for personalized diagnosis and treatment. The advant of clustered regular interspaced short palindromic repeats (CRISPR) technology has profoundly enhanced our understanding of the structure and function of the TNBC genome, providing a powerful tool for investigating the occurrence and development of diseases. This review focuses on the application of CRISPR/Cas technology in the personalized diagnosis and treatment of TNBC. We begin by discussing the unique attributes of TNBC and the limitations of current diagnostic and treatment approaches: conventional diagnostic methods provide limited insights into TNBC, while traditional chemotherapy drugs are often associated with low efficacy and severe side effects. The CRISPR/Cas system, which activates Cas enzymes through complementary guide RNAs (gRNAs) to selectively degrade specific nucleic acids, has emerged as a robust tool for TNBC research. This technology enables precise gene editing, allowing for a deeper understanding of TNBC heterogeneity by marking and tracking diverse cell clones. Additionally, CRISPR facilitates high-throughput screening to promptly identify genes involved in TNBC growth, metastasis, and drug resistance, thus revealing new therapeutic targets and strategies. In TNBC diagnostics, CRISPR/Cas was applied to develop molecular diagnostic systems based on Cas9, Cas12, and Cas13, each employing distinct detection principles. These systems can sensitively and specifically detect a variety of TNBC biomarkers, including cell-specific DNA/RNA and circulating tumor DNA (ctDNA). In the realm of precision therapy, CRISPR/Cas has been utilized to identify key genes implicated in TNBC progression and treatment resistance. CRISPR-based screening has uncovered potential therapeutic targets, while its gene-editing capabilities have facilitated the development of combination therapies with traditional chemotherapy drugs, enhancing their efficacy. Despite its promise, the clinical translation of CRISPR/Cas technology remains in its early stages. Several clinical trials are underway to assess its safety and efficacy in the treatment of various genetic diseases and cancers. Challenges such as off-target effects, editing efficiency, and delivery methods remain to be addressed. The integration of CRISPR/Cas with other technologies, such as 3D cell culture systems, human induced pluripotent stem cells (hiPSCs), and artificial intelligence (AI), is expected to further advance precision medicine for TNBC. These technological convergences can offer deeper insights into disease mechanisms and facilitate the development of personalized treatment strategies. In conclusion, the CRISPR/Cas system holds immense potential in the precise diagnosis and treatment of TNBC. As the technology progresses and becomes more costs-effective, its clinical relevance will grow, and the translation of CRISPR/Cas system data into clinical applications will pave the way for optimal diagnosis and treatment strategies for TNBC patients. However, technical hurdles and ethical considerations require ongoing research and regulation to ensure safety and efficacy.
2.Low-titer group O whole blood: challenges to blood stations
Hong LIN ; Xi YU ; Wenjia HU ; Ling MA
Chinese Journal of Blood Transfusion 2025;38(2):297-302
Whole blood transfusion for the resuscitation of trauma patients is not a new concept, with its history dating back to World War I. Due to the significant survival benefits of early intervention with whole blood, an increasing number of countries and regions are using whole blood for pre-hospital resuscitation of patients with traumatic haemorrhage. Whole blood containing low-titer anti-A and anti-B antibodies is known as low-titer group O whole blood. The safety of transfusion of low-titer group O whole blood has been proven in military and local trauma centers in some countries. The use of low-titer group O whole blood for pre-hospital trauma care in China will pose new challenges to blood stations that provide whole blood. This paper reviews the selection of group O donors, the setting of anti-A and anti-B titers threshold and their detection, as well as the collection, preparation and storage of whole blood.
3.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
4.Phase changes and quantity-quality transfer of raw material, calcined decoction pieces, and standard decoction of Ostreae Concha (Ostrea rivularis).
Hong-Yi ZHANG ; Jing-Wei ZHOU ; Jia-Wen LIU ; Wen-Bo FEI ; Shi-Ru HUANG ; Yu-Mei CHEN ; Chong-Yang LI ; Fei-Fei LI ; Qiao-Ling MA ; Fu WANG ; Yuan HU ; You-Ping LIU ; Shi-Lin CHEN ; Lin CHEN ; Hong-Ping CHEN
China Journal of Chinese Materia Medica 2025;50(5):1209-1223
The phase changes and quantity-quality transfer of 17 batches of Ostreae Concha(Ostrea rivularis) during the raw material-calcined decoction pieces-standard decoction process were analyzed. The content of calcium carbonate(CaCO_3), the main component, was determined by chemical titration, and the extract yield and transfer rate were calculated. The CaCO_3 content in the raw material, calcined decoction pieces, and standard decoction was 94.39%-98.80%, 95.03%-99.22%, and 84.58%-90.47%, respectively. The process of raw material to calcined decoction pieces showed the yield range of 96.85% to 98.55% and the CaCO_3 transfer rate range of 96.92% to 99.27%. The process of calcined decoction pieces to standard decoction showed the extract yield range of 2.86% to 5.48% and the CaCO_3 transfer rate range of 2.59% to 5.13%. The results of X-ray fluorescence(XRF) assay showed that the raw material, calcined decoction pieces, and standard decoction mainly contained Ca, Na, Mg, Si, Br, Cl, Al, Fe, Cr, Mn, and K. The chemometric results showed an increase in the relative content of Cr, Fe, and Si from raw material to calcined decoction pieces and an increase in the relative content of Mg, Al, Br, K, Cl, and Na from calcined decoction pieces to standard decoction. X-ray diffraction(XRD) was employed to establish XRD characteristic patterns of the raw material, calcined decoction pieces, and standard decoction. The XRD results showed that the main phase of all three was calcite, and no transformation of crystalline form or generation of new phase was observed. Fourier transform infrared spectroscopy(FTIR) was employed to establish the FTIR characteristic spectra of the raw material, calcined decoction pieces, and standard decoction. The FTIR results showed that the raw material had internal vibrations of O-H, C-H, C=O, C-O, and CO■ groups. Due to the loss of organic matter components after calcination, no information about the vibrations of C-H, C=O, and C-O groups was observed in the spectra of calcined decoction pieces and standard decoction. In summary, this study elucidated the quantity-quality transfer and phase changes in the raw material-calcined decoction pieces-standard decoction process by determining the CaCO_3 content, calculating the extract yield and transfer rate, and comparing the element changes, FTIR characteristic spectra, and XRD characteristic pattern. The results were reasonable and reliable, laying a foundation for the subsequent process research and quality control of the formula granules of calcined Ostreae Concha(O. rivularis Gould), and providing ideas and methods for the quality control of the whole process of raw material-decoction pieces-standard decoction-formula granules of Ostreae Concha and other testacean traditional Chinese medicine.
Drugs, Chinese Herbal/isolation & purification*
;
Calcium Carbonate/analysis*
;
Quality Control
5.Pharmacokinetics of Jinlingzi San and its single medicines in rats by LC-MS/MS.
Nan HU ; Yan-Bin MENG ; Si-Yu SHAN ; Shuang-Shuang ZHENG ; Ying-Han WANG ; Lan WANG ; Yu-Ling LIU
China Journal of Chinese Materia Medica 2025;50(5):1385-1391
This study aims to investigate the scientificity and efficacy of the compatibility of Jinlingzi San from pharmacokinetics. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was utilized to determine the plasma concentrations of the active components: toosendanin, tetrahydropalmatine A, and tetrahydropalmatine B at various time points following the gavage of Jinlingzi San and its single medicines in rats. Subsequently, WinNonlin was employed to calculate pertinent pharmacokinetic parameters. The pharmacokinetic parameters in rat plasma were compared between the single medicines and the compound formula of Jinlingzi San. It was discovered that the area under the curve(AUC_(all)) and peak concentrations(C_(max)) of tetrahydropalmatine A, and tetrahydropalmatine B were significantly elevated in the compound formula group compared with the single medicine groups. Conversely, the AUC_(all )and C_(max) of toosendanin notably decreased. Furthermore, the compound formula group had longer mean residence time(MRT) and lower apparent clearance(CL/F) of all three active ingredients than the single medicine groups(P<0.05). These findings indicated that Jinlingzi San enhanced the absorption of tetrahydropalmatine A and tetrahydropalmatine B in vivo, facilitating their pharmacological actions. Concurrently, it inhibited the absorption of toosendanin, thereby preventing potential toxic reactions. Moreover, the compatibility prolonged the residence time of the active ingredients in the body. This study provides a reference for exploring the compatibility rationality of Jinlingzi San.
Animals
;
Rats
;
Tandem Mass Spectrometry/methods*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Chromatography, Liquid/methods*
;
Berberine Alkaloids/blood*
;
Liquid Chromatography-Mass Spectrometry
6.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
7.USP20 as a super-enhancer-regulated gene drives T-ALL progression via HIF1A deubiquitination.
Ling XU ; Zimu ZHANG ; Juanjuan YU ; Tongting JI ; Jia CHENG ; Xiaodong FEI ; Xinran CHU ; Yanfang TAO ; Yan XU ; Pengju YANG ; Wenyuan LIU ; Gen LI ; Yongping ZHANG ; Yan LI ; Fenli ZHANG ; Ying YANG ; Bi ZHOU ; Yumeng WU ; Zhongling WEI ; Yanling CHEN ; Jianwei WANG ; Di WU ; Xiaolu LI ; Yang YANG ; Guanghui QIAN ; Hongli YIN ; Shuiyan WU ; Shuqi ZHANG ; Dan LIU ; Jun-Jie FAN ; Lei SHI ; Xiaodong WANG ; Shaoyan HU ; Jun LU ; Jian PAN
Acta Pharmaceutica Sinica B 2025;15(9):4751-4771
T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy with a poor prognosis, despite advancements in treatment. Many patients struggle with relapse or refractory disease. Investigating the role of the super-enhancer (SE) regulated gene ubiquitin-specific protease 20 (USP20) in T-ALL could enhance targeted therapies and improve clinical outcomes. Analysis of histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) data from six T-ALL cell lines and seven pediatric samples identified USP20 as an SE-regulated driver gene. Utilizing the Cancer Cell Line Encyclopedia (CCLE) and BloodSpot databases, it was found that USP20 is specifically highly expressed in T-ALL. Knocking down USP20 with short hairpin RNA (shRNA) increased apoptosis and inhibited proliferation in T-ALL cells. In vivo studies showed that USP20 knockdown reduced tumor growth and improved survival. The USP20 inhibitor GSK2643943A demonstrated similar anti-tumor effects. Mass spectrometry, RNA-Seq, and immunoprecipitation revealed that USP20 interacted with hypoxia-inducible factor 1 subunit alpha (HIF1A) and stabilized it by deubiquitination. Cleavage under targets and tagmentation (CUT&Tag) results indicated that USP20 co-localized with HIF1A, jointly modulating target genes in T-ALL. This study identifies USP20 as a therapeutic target in T-ALL and suggests GSK2643943A as a potential treatment strategy.
8.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.
9.Antibody threshold and demographic characteristics of low-titer group O whole blood donors in Jiangsu
Tao FENG ; Rui ZHU ; Wenjia HU ; Ling MA ; Hong LIN ; Xi YU ; Chun ZHOU ; Nizhen JIANG
Chinese Journal of Blood Transfusion 2025;38(9):1225-1229
Objective: To investigate the distribution of IgM anti-A/B titers among group O whole blood donors in Jiangsu, establish a low-titer threshold, and analyze the demographic characteristics of low-titer donors, so as to provide data for recruiting low-titer group O whole blood (LTOWB) donors. Methods: Plasma samples from 1 009 group O whole blood donors were tested for IgM anti-A and anti-B titers using the microplate technique. The distribution of antibody titers was analyzed to establish a low-titer threshold. The distribution trends of titers across different demographic groups were also analyzed. Results: The peak titer for anti-A, anti-B were 64 (31.5%), 4 (23.8%), respectively, The proportion of donors with both anti-A and anti-B titers below 64 was 97.3% (982/1 009). The mean anti-A titer was higher than anti-B titer. Anti-A titers were higher in female donors than in male donors (P<0.05). The anti-A titers differed significantly among different age groups (P<0.05). However, no significant difference in titers was observed based on the number of donations (P>0.05). Conclusion: A titer of 64 can be used as the reference threshold of LTOWB in Jiangsu. Male donors of appropriate age are more suitable than female donors for establishing an emergency panel of LTOWB mobile donors.
10.Application and data analysis of the cardio-cerebrovascular events monitoring system in Yichang
Zhengchao FANG ; Jiajuan YANG ; Chi HU ; Chan WU ; Yaling DENG ; Zhiying YU ; Jie ZHU ; Ling ZHANG
Journal of Public Health and Preventive Medicine 2025;36(6):95-98
Objective To analyze the monitoring data of cardio-cerebrovascular diseases prevention and control system in Yichang in 2022, and to provide data support and experience for the precise prevention and treatment of cardio-cerebrovascular diseases. Methods Acute cardiovascular and cerebrovascular event data were collected from the Yichang Cardio-cerebrovascular Events Monitoring System from January 1, 2022 to December 31, 2022. Descriptive analysis was conducted for the data collected. Statistical analysis was performed using SPSS 20.0 software, and a chi-square test was used to analyze the count data. Results A total of 37,217 cases of cardio-cerebrovascular events were monitored in Yichang in 2022. The crude incidence and the standardized incidence were 983.84/100,000 and 541.55/100,000, respectively. The incidence in males was higher than females (554.93/100,000 vs 428.91/100,000,χ2 =464.52,P<0.05). The top three diseases were cerebral infarction, acute myocardial infarction, and cerebral hemorrhage. The incidence of events increased with age, and 79.80% of the cases were over 60 years old. The main onset time was from May to August. Conclusion The use of the cardio-cerebrovascular events monitoring system in Yichang and the implementation of “mandatory reporting card” monitoring can timely obtain the epidemic characteristics of the diseases, provide support for the precise formulation of prevention and control strategies and measures, reduce underreporting rates, and improve the monitoring system, which is worthy of reference and promotion.


Result Analysis
Print
Save
E-mail