1.Dimethyl fumarate alleviates DEHP-induced intrahepatic cholestasis in maternal rats during pregnancy through NF-κB/NLRP3 signaling pathway
Yue Jiang ; Yun Yu ; Lun Zhang ; Qianqian Huang ; Wenkang Tao ; Mengzhen Hou ; Fang Xie ; Xutao Ling ; Jianqing Wang
Acta Universitatis Medicinalis Anhui 2025;60(1):117-123
Objective :
To investigate the protective effect of dimethyl fumarate(DMF) on maternal intrahepatic cholestasis(ICP) during pregnancy induced by di(2-ethylhexyl) phthalate(DEHP) exposure and its mechanism.
Methods :
Thirty-two 8-week-old female institute of cancer research(ICR) mice were randomly divided into 4 groups: Ctrl group, DEHP group, DMF group and DEHP+DMF group. DEHP and DEHP+DMF groups were treated with DEHP(200 mg/kg) by gavage every morning at 9:00 a.m. DMF and DEHP+DMF groups were treated with DMF(150 mg/kg) from day 13 to day 16 of gestation by gavage. After completion of gavage on day 16 of pregnancy, maternal blood, maternal liver, placenta, and amniotic fluid were collected from pregnant mice after a six-hour abrosia. The body weight of the mother rats and the body weight of the fetus rats were sorted and analyzed; the levels of total bile acid(TBA), alkaline phosphatase(ALP), aspartate aminotransferase/alanine aminotransferase(AST/ALT) in serum and TBA in liver, amniotic fluid and placenta were detected by biochemical analyzer; HE staining was used to observe the pathological changes of liver tissue; Quantitative reverse transcription PCR(RT-qPCR) was used to detect the expression levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-6, IL-1, IL-18 and NOD-like receptor thermal protein domain associated protein 3(NLRP3) in the liver; Western blot was used to detect the expression of the nuclear factor KappaB(NF-κB) and NLRP3.
Results :
Compared with the control group, the body weight of the DEHP-treated dams and pups decreased(P<0.05); the levels of TBA, ALP, AST/ALT in the serum of dams and the levels of TBA in the liver, amniotic fluid, and placenta of dams increased(P<0.05); the histopathological results showed that liver tissue was damaged, bile ducts were deformed, and there was inflammatory cell infiltration around them; the levels of inflammation-related factors TNF-α, IL-6, IL-1, IL-18 and NLRP3 transcription in maternal liver increased(P<0.05); the expression of NF-κB and NLRP3 protein in maternal liver significantly increased( P<0. 05). Compared with the DEHP group,the body weight of both dams and fetuses significantly increased in DEHP + DMF group( P<0. 05); the levels of TBA,ALP,AST/ALT in the serum of dams and amniotic fluid of fetuses decreased( P<0. 05); the degree of liver lesions was improved; the transcription levels of inflammation-related factors TNF-α,IL-6,IL-1,IL-18 and NLRP3 in maternal liver decreased( P<0. 05); the expression of NF-κB and NLRP3 protein in maternal liver significantly decreased( P<0. 05).
Conclusion
DMF can effectively protect the DEHP exposure to lead to female ICP,and its mechanism may be through inhibiting the NF-κB/NLRP3 pathway and reducing liver inflammation.
2.Mechanism of Xiangmei Pills in treating ulcerative colitis based on UHPLC-Q-Orbitrap HRMS and 16S rDNA sequencing of intestinal flora.
Ya-Fang HOU ; Rui-Sheng WANG ; Zhen-Ling ZHANG ; Wen-Wen CAO ; Meng ZHAO ; Ya-Hong ZHAO
China Journal of Chinese Materia Medica 2025;50(4):882-895
The efficacy of Xiangmei Pills on rats with ulcerative colitis(UC) was investigated by characterizing the spectrum of the active chemical components of Xiangmei Pills. Rapid identification and classification of the main chemical components were performed,and the therapeutic effects of Xiangmei Pills on the proteins and intestinal flora of UC rats were analyzed to explore the mechanism of its action in treating UC. Fifty SD rats were acclimatized to feeding for 3 d and randomly divided into blank group, model group,mesalazine group(0. 4 g·kg~(-1)), low-dose group of Xiangmei Pills(1. 89 g·kg~(-1)), and high-dose group of Xiangmei Pills(5. 67 g·kg~(-1)), with 10 rats in each group. 5% dextrose sodium sulfate(DSS) was given by gavage to induce the male SD rat model with UC,and the corresponding medicinal solution was given by gavage after 10 days, respectively. The therapeutic effect of Xiangmei Pills on rats with UC was evaluated according to body mass, disease activity index(DAI), and hematoxylin-eosin(HE) staining, and the histopathological changes in the colon were observed. Ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) technique was used to rapidly and accurately identify the main chemical constituents of Xiangmei Pills. Immunohistochemistry was used to detect the expression of aryl hydrocarbon receptor(AhR),interferon-γ(IFN-γ), mucin-2(MUC-2), and cytochrome P450 1A1(CYP1A1) in colon tissue. Interleukin-22(IL-22) expression in colon tissue was detected by immunofluorescence. The 16S r DNA high-throughput sequencing technique was used to study the modulatory effects of Xiangmei Pills on the intestinal flora structure of rats with UC. Pharmacodynamic results showed that compared with that of the blank group, the colon tissue of the model group was congested, and ulcers were visible in the mucosa; compared with that in the model group, the histopathology of the colon of the rats with UC in the groups of Xiangmei Pills were improved, with scattered ulcers and reduced inflammatory cell infiltration. Chemical analysis showed that a total of 45 components were identified by mass spectrometry information, including 15 phenolic acids, 8 coumarins, 15 organic acids, 3 amino acids, 2 flavonoids, and 2 other components. Compared with those in the blank group, the levels of Ah R, CYP1A1, MUC-2, and IL-22 proteins in the colon tissue of rats in the model group were significantly decreased, and the level of IFN-γ protein was significantly increased; the intestinal flora of rats in the model group was disorganized, with a decrease in the abundance of the flora; the relative abundance of Bacteroidetes,unclassified genera of Ascomycetes, Prevotella of the Prevotella family, and Prevotella decreased significantly, and that of Firmicutes decreased, but the difference was not statistically significant. The relative abundance of Bacteroidetes, Bifidobacterium, and Lactobacillus increased significantly. Compared with those of the model group, the levels of Ah R, CYP1A1, MUC-2, and IL-22proteins in the colonic tissue of the groups of Xiangmei Pills were significantly higher, and the levels of IFN-γ proteins were significantly lower. The recovery of the intestinal flora was accelerated, and the diversity of the intestinal flora was significantly increased. The relative abundance of Bacteroidetes was significantly increased, and that of unclassified genera of Ascomycetes,Lactobacillus, Prevotella of the Prevotella family, and Prevotella was significantly increased. The relative abundance of Bacteroidetes and Bifidobacterium was significantly decreased. This study demonstrated that Xiangmei Pills can effectively treat UC, mainly through the phenolic acid and organic acid components to stimulate the intestinal barrier, regulate protein expression and the relative abundance and diversity of intestinal flora, and play a role in the treatment of UC.
Animals
;
Colitis, Ulcerative/metabolism*
;
Drugs, Chinese Herbal/chemistry*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Gastrointestinal Microbiome/genetics*
;
Chromatography, High Pressure Liquid
;
Humans
;
Mass Spectrometry
;
RNA, Ribosomal, 16S/genetics*
;
Bacteria/drug effects*
3.Analgesic Effect of Dehydrocorydaline on Chronic Constriction Injury-Induced Neuropathic Pain via Alleviating Neuroinflammation.
Bai-Ling HOU ; Chen-Chen WANG ; Ying LIANG ; Ming JIANG ; Yu-E SUN ; Yu-Lin HUANG ; Zheng-Liang MA
Chinese journal of integrative medicine 2025;31(6):499-505
OBJECTIVE:
To illustrate the role of dehydrocorydaline (DHC) in chronic constriction injury (CCI)-induced neuropathic pain and the underlying mechanism.
METHODS:
C57BL/6J mice were randomly divided into 3 groups by using a random number table, including sham group (sham operation), CCI group [intrathecal injection of 10% dimethyl sulfoxide (DMSO)], and CCI+DHC group (intrathecal injection of DHC), 8 mice in each group. A CCI mouse model was conducted to induce neuropathic pain through ligating the right common sciatic nerve. On day 14 after CCI modeling or sham operation, mice were intrathecal injected with 5 µL of 10% DMSO or 10 mg/kg DHC (5 µL) into the 5th to 6th lumbar intervertebral space (L5-L6). Pregnant ICR mice were sacrificed for isolating primary spinal neurons on day 14 of embryo development for in vitro experiment. Pain behaviors were evaluated by measuring the paw withdrawal mechanical threshold (PWMT) of mice. Immunofluorescence was used to observe the activation of astrocytes and microglia in mouse spinal cord. Protein expressions of inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), phosphorylation of N-methyl-D-aspartate receptor subunit 2B (p-NR2B), and NR2B in the spinal cord or primary spinal neurons were detected by Western blot.
RESULTS:
In CCI-induced neuropathic pain model, mice presented significantly decreased PWMT, activation of glial cells, overexpressions of iNOS, TNF-α, IL-6, and higher p-NR2B/NR2B ratio in the spinal cord (P<0.05 or P<0.01), which were all reversed by a single intrathecal injection of DHC (P<0.05 or P<0.01). The p-NR2B/NR2B ratio in primary spinal neurons were also inhibited after DHC treatment (P<0.05).
CONCLUSION
An intrathecal injection of DHC relieved CCI-induced neuropathic pain in mice by inhibiting the neuroinflammation and neuron hyperactivity.
Animals
;
Neuralgia/etiology*
;
Mice, Inbred C57BL
;
Analgesics/pharmacology*
;
Neuroinflammatory Diseases/pathology*
;
Constriction
;
Male
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Mice, Inbred ICR
;
Microglia/pathology*
;
Spinal Cord/drug effects*
;
Female
;
Mice
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Constriction, Pathologic/complications*
;
Interleukin-6/metabolism*
;
Astrocytes/metabolism*
;
Chronic Disease
;
Neurons/metabolism*
4.A practice guideline for therapeutic drug monitoring of mycophenolic acid for solid organ transplants.
Shuang LIU ; Hongsheng CHEN ; Zaiwei SONG ; Qi GUO ; Xianglin ZHANG ; Bingyi SHI ; Suodi ZHAI ; Lingli ZHANG ; Liyan MIAO ; Liyan CUI ; Xiao CHEN ; Yalin DONG ; Weihong GE ; Xiaofei HOU ; Ling JIANG ; Long LIU ; Lihong LIU ; Maobai LIU ; Tao LIN ; Xiaoyang LU ; Lulin MA ; Changxi WANG ; Jianyong WU ; Wei WANG ; Zhuo WANG ; Ting XU ; Wujun XUE ; Bikui ZHANG ; Guanren ZHAO ; Jun ZHANG ; Limei ZHAO ; Qingchun ZHAO ; Xiaojian ZHANG ; Yi ZHANG ; Yu ZHANG ; Rongsheng ZHAO
Journal of Zhejiang University. Science. B 2025;26(9):897-914
Mycophenolic acid (MPA), the active moiety of both mycophenolate mofetil (MMF) and enteric-coated mycophenolate sodium (EC-MPS), serves as a primary immunosuppressant for maintaining solid organ transplants. Therapeutic drug monitoring (TDM) enhances treatment outcomes through tailored approaches. This study aimed to develop an evidence-based guideline for MPA TDM, facilitating its rational application in clinical settings. The guideline plan was drawn from the Institute of Medicine and World Health Organization (WHO) guidelines. Using the Delphi method, clinical questions and outcome indicators were generated. Systematic reviews, Grading of Recommendations Assessment, Development, and Evaluation (GRADE) evidence quality evaluations, expert opinions, and patient values guided evidence-based suggestions for the guideline. External reviews further refined the recommendations. The guideline for the TDM of MPA (IPGRP-2020CN099) consists of four sections and 16 recommendations encompassing target populations, monitoring strategies, dosage regimens, and influencing factors. High-risk populations, timing of TDM, area under the curve (AUC) versus trough concentration (C0), target concentration ranges, monitoring frequency, and analytical methods are addressed. Formulation-specific recommendations, initial dosage regimens, populations with unique considerations, pharmacokinetic-informed dosing, body weight factors, pharmacogenetics, and drug-drug interactions are covered. The evidence-based guideline offers a comprehensive recommendation for solid organ transplant recipients undergoing MPA therapy, promoting standardization of MPA TDM, and enhancing treatment efficacy and safety.
Mycophenolic Acid/administration & dosage*
;
Drug Monitoring/methods*
;
Humans
;
Organ Transplantation
;
Immunosuppressive Agents/administration & dosage*
;
Delphi Technique
5.Expert consensus on apical microsurgery.
Hanguo WANG ; Xin XU ; Zhuan BIAN ; Jingping LIANG ; Zhi CHEN ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Xi WEI ; Kaijin HU ; Qintao WANG ; Zuhua WANG ; Jiyao LI ; Dingming HUANG ; Xiaoyan WANG ; Zhengwei HUANG ; Liuyan MENG ; Chen ZHANG ; Fangfang XIE ; Di YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Yi DU ; Junqi LING ; Lin YUE ; Xuedong ZHOU ; Qing YU
International Journal of Oral Science 2025;17(1):2-2
Apical microsurgery is accurate and minimally invasive, produces few complications, and has a success rate of more than 90%. However, due to the lack of awareness and understanding of apical microsurgery by dental general practitioners and even endodontists, many clinical problems remain to be overcome. The consensus has gathered well-known domestic experts to hold a series of special discussions and reached the consensus. This document specifies the indications, contraindications, preoperative preparations, operational procedures, complication prevention measures, and efficacy evaluation of apical microsurgery and is applicable to dentists who perform apical microsurgery after systematic training.
Microsurgery/standards*
;
Humans
;
Apicoectomy
;
Contraindications, Procedure
;
Tooth Apex/diagnostic imaging*
;
Postoperative Complications/prevention & control*
;
Consensus
;
Treatment Outcome
6.Expert consensus on pulpotomy in the management of mature permanent teeth with pulpitis.
Lu ZHANG ; Chen LIN ; Zhuo CHEN ; Lin YUE ; Qing YU ; Benxiang HOU ; Junqi LING ; Jingping LIANG ; Xi WEI ; Wenxia CHEN ; Lihong QIU ; Jiyao LI ; Yumei NIU ; Zhengmei LIN ; Lei CHENG ; Wenxi HE ; Xiaoyan WANG ; Dingming HUANG ; Zhengwei HUANG ; Weidong NIU ; Qi ZHANG ; Chen ZHANG ; Deqin YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Jingzhi MA ; Shuli DENG ; Xiaoli XIE ; Xiuping MENG ; Jian YANG ; Xuedong ZHOU ; Zhi CHEN
International Journal of Oral Science 2025;17(1):4-4
Pulpotomy, which belongs to vital pulp therapy, has become a strategy for managing pulpitis in recent decades. This minimally invasive treatment reflects the recognition of preserving healthy dental pulp and optimizing long-term patient-centered outcomes. Pulpotomy is categorized into partial pulpotomy (PP), the removal of a partial segment of the coronal pulp tissue, and full pulpotomy (FP), the removal of whole coronal pulp, which is followed by applying the biomaterials onto the remaining pulp tissue and ultimately restoring the tooth. Procedural decisions for the amount of pulp tissue removal or retention depend on the diagnostic of pulp vitality, the overall treatment plan, the patient's general health status, and pulp inflammation reassessment during operation. This statement represents the consensus of an expert committee convened by the Society of Cariology and Endodontics, Chinese Stomatological Association. It addresses the current evidence to support the application of pulpotomy as a potential alternative to root canal treatment (RCT) on mature permanent teeth with pulpitis from a biological basis, the development of capping biomaterial, and the diagnostic considerations to evidence-based medicine. This expert statement intends to provide a clinical protocol of pulpotomy, which facilitates practitioners in choosing the optimal procedure and increasing their confidence in this rapidly evolving field.
Humans
;
Calcium Compounds/therapeutic use*
;
Consensus
;
Dental Pulp
;
Dentition, Permanent
;
Oxides/therapeutic use*
;
Pulpitis/therapy*
;
Pulpotomy/standards*
7.Expert consensus on intentional tooth replantation.
Zhengmei LIN ; Dingming HUANG ; Shuheng HUANG ; Zhi CHEN ; Qing YU ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Jiyao LI ; Xiaoyan WANG ; Zhengwei HUANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Lan ZHANG ; Jin ZHANG ; Xiaoli XIE ; Jinpu CHU ; Kehua QUE ; Xuejun GE ; Xiaojing HUANG ; Zhe MA ; Lin YUE ; Xuedong ZHOU ; Junqi LING
International Journal of Oral Science 2025;17(1):16-16
Intentional tooth replantation (ITR) is an advanced treatment modality and the procedure of last resort for preserving teeth with inaccessible endodontic or resorptive lesions. ITR is defined as the deliberate extraction of a tooth; evaluation of the root surface, endodontic manipulation, and repair; and placement of the tooth back into its original socket. Case reports, case series, cohort studies, and randomized controlled trials have demonstrated the efficacy of ITR in the retention of natural teeth that are untreatable or difficult to manage with root canal treatment or endodontic microsurgery. However, variations in clinical protocols for ITR exist due to the empirical nature of the original protocols and rapid advancements in the field of oral biology and dental materials. This heterogeneity in protocols may cause confusion among dental practitioners; therefore, guidelines and considerations for ITR should be explicated. This expert consensus discusses the biological foundation of ITR, the available clinical protocols and current status of ITR in treating teeth with refractory apical periodontitis or anatomical aberration, and the main complications of this treatment, aiming to refine the clinical management of ITR in accordance with the progress of basic research and clinical studies; the findings suggest that ITR may become a more consistent evidence-based option in dental treatment.
Humans
;
Tooth Replantation/methods*
;
Consensus
;
Periapical Periodontitis/surgery*
8.Synaptic Vesicle Glycoprotein 2A Slows down Amyloidogenic Processing of Amyloid Precursor Protein via Regulating Its Intracellular Trafficking.
Qian ZHANG ; Xiao Ling WANG ; Yu Li HOU ; Jing Jing ZHANG ; Cong Cong LIU ; Xiao Min ZHANG ; Ya Qi WANG ; Yu Jian FAN ; Jun Ting LIU ; Jing LIU ; Qiao SONG ; Pei Chang WANG
Biomedical and Environmental Sciences 2025;38(5):607-624
OBJECTIVE:
To reveal the effects and potential mechanisms by which synaptic vesicle glycoprotein 2A (SV2A) influences the distribution of amyloid precursor protein (APP) in the trans-Golgi network (TGN), endolysosomal system, and cell membranes and to reveal the effects of SV2A on APP amyloid degradation.
METHODS:
Colocalization analysis of APP with specific tagged proteins in the TGN, ensolysosomal system, and cell membrane was performed to explore the effects of SV2A on the intracellular transport of APP. APP, β-site amyloid precursor protein cleaving enzyme 1 (BACE1) expressions, and APP cleavage products levels were investigated to observe the effects of SV2A on APP amyloidogenic processing.
RESULTS:
APP localization was reduced in the TGN, early endosomes, late endosomes, and lysosomes, whereas it was increased in the recycling endosomes and cell membrane of SV2A-overexpressed neurons. Moreover, Arl5b (ADP-ribosylation factor 5b), a protein responsible for transporting APP from the TGN to early endosomes, was upregulated by SV2A. SV2A overexpression also decreased APP transport from the cell membrane to early endosomes by downregulating APP endocytosis. In addition, products of APP amyloid degradation, including sAPPβ, Aβ 1-42, and Aβ 1-40, were decreased in SV2A-overexpressed cells.
CONCLUSION
These results demonstrated that SV2A promotes APP transport from the TGN to early endosomes by upregulating Arl5b and promoting APP transport from early endosomes to recycling endosomes-cell membrane pathway, which slows APP amyloid degradation.
Amyloid beta-Protein Precursor/genetics*
;
Membrane Glycoproteins/genetics*
;
Animals
;
Protein Transport
;
Nerve Tissue Proteins/genetics*
;
Humans
;
Mice
;
Endosomes/metabolism*
;
trans-Golgi Network/metabolism*
9.Phenotypic Function of Legionella pneumophila Type I-F CRISPR-Cas.
Ting MO ; Hong Yu REN ; Xian Xian ZHANG ; Yun Wei LU ; Zhong Qiu TENG ; Xue ZHANG ; Lu Peng DAI ; Ling HOU ; Na ZHAO ; Jia HE ; Tian QIN
Biomedical and Environmental Sciences 2025;38(9):1105-1119
OBJECTIVE:
CRISPR-Cas protects bacteria from exogenous DNA invasion and is associated with bacterial biofilm formation and pathogenicity.
METHODS:
We analyzed the type I-F CRISPR-Cas system of Legionella pneumophila WX48, including Cas1, Cas2-Cas3, Csy1, Csy2, Csy3, and Cas6f, along with downstream CRISPR arrays. We explored the effects of the CRISPR-Cas system on the in vitro growth, biofilm-forming ability, and pathogenicity of L. pneumophila through constructing gene deletion mutants.
RESULTS:
The type I-F CRISPR-Cas system did not affect the in vitro growth of wild-type or mutant strains. The biofilm formation and intracellular proliferation of the mutant strains were weaker than those of the wild type owing to the regulation of type IV pili and Dot/Icm type IV secretion systems. In particular, Cas6f deletion strongly inhibited these processes.
CONCLUSION
The type I-F CRISPR-Cas system may reduce biofilm formation and intracellular proliferation in L. pneumophila.
Legionella pneumophila/pathogenicity*
;
CRISPR-Cas Systems
;
Biofilms/growth & development*
;
Phenotype
;
Bacterial Proteins/metabolism*
;
Gene Deletion
10.Application of HPLC-MS/MS in the analysis of six tricarboxylic acid cycle metabolites in a mouse model of prenatal DEHP exposure
Wenkang Tao ; Lun Zhang ; Qianqian Huang ; Yun Yu ; Yue Jiang ; Mengzhen Hou ; Xutao Ling ; Fang Xie ; Jianqing Wang
Acta Universitatis Medicinalis Anhui 2025;60(5):897-905
Objective :
To establish a method for measuring major organic acids in the tricarboxylic acid cycle using a high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS) system, and to investigate the changes in six tricarboxylic acid cycle organic acids(fumaric acid, malic acid, succinic acid, α-ketoglutaric acid, cis-aconitic acid, and citric acid) in the serum, liver, and placenta of mice exposed to di(2-ethylhexyl) phthalate(DEHP) during pregnancy.
Methods :
The serum, liver and placental samples from pregnant mice were processed and eluted through a Waters ACQUITY UPLC BEH Amide Column(130 Å, 1.7 μm, 2.1 mm × 150 mm) using a gradient elution program. Mobile phase A comprised an aqueous solution of 10 mmol/L ammonium acetate and 5 μmol/L methanephosphonic acid, while mobile phase B consisted of a 90% acetonitrile aqueous solution containing 10 mmol/L ammonium acetate and 5 μmol/L methanephosphonic acid, with a flow rate maintained at 0.35 ml/min. The mass spectrometry detection system utilized an electrospray ionization technique with negative ion mode for multiple reaction monitoring.
Results :
The correlation coefficients of the standard curves for the six tricarboxylic acid cycle organic acid metabolites were all above 0.996 within the quantitative range. The method's accuracy ranged from 97.14% to 108.26%, with inter-day and intra-day precision relative standard deviation between 1.35% and 6.73%. The matrix effect was between 93.29% and 107.47%, and the extraction recovery rate ranged from 94.82% to 112.57%. Analysis of six tricarboxylic acid cycle organic acids in the liver, serum, and placenta of DEHP-exposed mice during pregnancy showed significant reductions in fumaric acid, malic acid, α-ketoglutaric acid, cis-aconitic acid, and citric acid compared to the control group(P<0.05).
Conclusion
The HPLC-MS/MS method established in this study for detecting six tricarboxylic acid cycle organic acids in the serum, liver, and placenta of DEHP-exposed pregnant mice is stable, highly sensitive and selective. Prenatal DEHP exposure induced alterations in the levels of tricarboxylic acid(TCA) cycle organic acid metabolites in the liver, serum, and placenta of mice, suggesting that DEHP exposure during pregnancy may interfere with mitochondrial TCA cycle processes. These findings indicate potential value in the diagnosis and treatment of diseases associated with prenatal DEHP exposure.


Result Analysis
Print
Save
E-mail