1.Circadian and non-circadian regulation of the male reproductive system and reproductive damage: advances in the role and mechanisms of clock genes.
Meng-Chao HE ; Ying-Zhong DAI ; Yi-Meng WANG ; Qin-Ru LI ; Si-Wen LUO ; Xi LING ; Tong WANG ; Jia CAO ; Qing CHEN
Acta Physiologica Sinica 2025;77(4):712-720
Recently, male reproductive health has attracted extensive attention, with the adverse effects of circadian disruption on male fertility gradually gaining recognition. However, the mechanism by which circadian disruption leads to damage to male reproductive system remains unclear. In this review, we first summarized the dual regulatory roles of circadian clock genes on the male reproductive system: (1) circadian regulation of testosterone synthesis via the hypothalamic-pituitary-testicular (HPT) and hypothalamic-pituitary-adrenal (HPA) axes; (2) non-circadian regulation of spermatogenesis. Next, we further listed the possible mechanisms by which circadian disruption impairs male fertility, including interference with the oscillatory function of the reproductive system, i.e., synchronization of the HPT axis, crosstalk between the HPT axis and the HPA axis, as well as direct damage to germ cells by disturbing the non-oscillatory function of the reproductive system. Future research using spatiotemporal omics, epigenomic assays, and neural circuit mapping in studying the male reproductive system may provide new clues to systematically unravel the mechanisms by which circadian disruption affects male reproductive system through circadian clock genes.
Male
;
Humans
;
Animals
;
Circadian Clocks/physiology*
;
Hypothalamo-Hypophyseal System/physiology*
;
Circadian Rhythm/genetics*
;
Spermatogenesis/physiology*
;
Pituitary-Adrenal System/physiology*
;
Testis/physiology*
;
Testosterone/biosynthesis*
;
CLOCK Proteins
;
Infertility, Male/physiopathology*
2.SOX11-mediated CBLN2 Upregulation Contributes to Neuropathic Pain through NF-κB-Driven Neuroinflammation in Dorsal Root Ganglia of Mice.
Ling-Jie MA ; Tian WANG ; Ting XIE ; Lin-Peng ZHU ; Zuo-Hao YAO ; Meng-Na LI ; Bao-Tong YUAN ; Xiao-Bo WU ; Yong-Jing GAO ; Yi-Bin QIN
Neuroscience Bulletin 2025;41(12):2201-2217
Neuropathic pain, a debilitating condition caused by dysfunction of the somatosensory nervous system, remains difficult to treat due to limited understanding of its molecular mechanisms. Bioinformatics analysis identified cerebellin 2 (CBLN2) as highly enriched in human and murine proprioceptive and nociceptive neurons. We found that CBLN2 expression is persistently upregulated in dorsal root ganglia (DRG) following spinal nerve ligation (SNL) in mice. In addition, transcription factor SOX11 binds to 12 cis-regulatory elements within the Cbln2 promoter to enhance its transcription. SNL also induced SOX11 upregulation, with SOX11 and CBLN2 co-localized in nociceptive neurons. The siRNA-mediated knockdown of Sox11 or Cbln2 attenuated SNL-induced mechanical allodynia and thermal hyperalgesia. High-throughput sequencing of DRG following intrathecal injection of CBLN2 revealed widespread gene expression changes, including upregulation of numerous NF-κB downstream targets. Consistently, CBLN2 activated NF-κB signaling, and inhibition with pyrrolidine dithiocarbamate reduced CBLN2-induced pain hypersensitivity, proinflammatory cytokines and chemokines production, and neuronal hyperexcitability. Together, these findings identified the SOX11/CBLN2/NF-κB axis as a critical mediator of neuropathic pain and a promising target for therapeutic intervention.
Animals
;
Neuralgia/metabolism*
;
Ganglia, Spinal/metabolism*
;
Up-Regulation
;
Mice
;
NF-kappa B/metabolism*
;
SOXC Transcription Factors/genetics*
;
Male
;
Neuroinflammatory Diseases/metabolism*
;
Mice, Inbred C57BL
;
Nerve Tissue Proteins/genetics*
;
Hyperalgesia/metabolism*
;
Signal Transduction
;
Spinal Nerves
3.Expert consensus on apical microsurgery.
Hanguo WANG ; Xin XU ; Zhuan BIAN ; Jingping LIANG ; Zhi CHEN ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Xi WEI ; Kaijin HU ; Qintao WANG ; Zuhua WANG ; Jiyao LI ; Dingming HUANG ; Xiaoyan WANG ; Zhengwei HUANG ; Liuyan MENG ; Chen ZHANG ; Fangfang XIE ; Di YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Yi DU ; Junqi LING ; Lin YUE ; Xuedong ZHOU ; Qing YU
International Journal of Oral Science 2025;17(1):2-2
Apical microsurgery is accurate and minimally invasive, produces few complications, and has a success rate of more than 90%. However, due to the lack of awareness and understanding of apical microsurgery by dental general practitioners and even endodontists, many clinical problems remain to be overcome. The consensus has gathered well-known domestic experts to hold a series of special discussions and reached the consensus. This document specifies the indications, contraindications, preoperative preparations, operational procedures, complication prevention measures, and efficacy evaluation of apical microsurgery and is applicable to dentists who perform apical microsurgery after systematic training.
Microsurgery/standards*
;
Humans
;
Apicoectomy
;
Contraindications, Procedure
;
Tooth Apex/diagnostic imaging*
;
Postoperative Complications/prevention & control*
;
Consensus
;
Treatment Outcome
4.Expert consensus on pulpotomy in the management of mature permanent teeth with pulpitis.
Lu ZHANG ; Chen LIN ; Zhuo CHEN ; Lin YUE ; Qing YU ; Benxiang HOU ; Junqi LING ; Jingping LIANG ; Xi WEI ; Wenxia CHEN ; Lihong QIU ; Jiyao LI ; Yumei NIU ; Zhengmei LIN ; Lei CHENG ; Wenxi HE ; Xiaoyan WANG ; Dingming HUANG ; Zhengwei HUANG ; Weidong NIU ; Qi ZHANG ; Chen ZHANG ; Deqin YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Jingzhi MA ; Shuli DENG ; Xiaoli XIE ; Xiuping MENG ; Jian YANG ; Xuedong ZHOU ; Zhi CHEN
International Journal of Oral Science 2025;17(1):4-4
Pulpotomy, which belongs to vital pulp therapy, has become a strategy for managing pulpitis in recent decades. This minimally invasive treatment reflects the recognition of preserving healthy dental pulp and optimizing long-term patient-centered outcomes. Pulpotomy is categorized into partial pulpotomy (PP), the removal of a partial segment of the coronal pulp tissue, and full pulpotomy (FP), the removal of whole coronal pulp, which is followed by applying the biomaterials onto the remaining pulp tissue and ultimately restoring the tooth. Procedural decisions for the amount of pulp tissue removal or retention depend on the diagnostic of pulp vitality, the overall treatment plan, the patient's general health status, and pulp inflammation reassessment during operation. This statement represents the consensus of an expert committee convened by the Society of Cariology and Endodontics, Chinese Stomatological Association. It addresses the current evidence to support the application of pulpotomy as a potential alternative to root canal treatment (RCT) on mature permanent teeth with pulpitis from a biological basis, the development of capping biomaterial, and the diagnostic considerations to evidence-based medicine. This expert statement intends to provide a clinical protocol of pulpotomy, which facilitates practitioners in choosing the optimal procedure and increasing their confidence in this rapidly evolving field.
Humans
;
Calcium Compounds/therapeutic use*
;
Consensus
;
Dental Pulp
;
Dentition, Permanent
;
Oxides/therapeutic use*
;
Pulpitis/therapy*
;
Pulpotomy/standards*
5.Expert consensus on intentional tooth replantation.
Zhengmei LIN ; Dingming HUANG ; Shuheng HUANG ; Zhi CHEN ; Qing YU ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Jiyao LI ; Xiaoyan WANG ; Zhengwei HUANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Lan ZHANG ; Jin ZHANG ; Xiaoli XIE ; Jinpu CHU ; Kehua QUE ; Xuejun GE ; Xiaojing HUANG ; Zhe MA ; Lin YUE ; Xuedong ZHOU ; Junqi LING
International Journal of Oral Science 2025;17(1):16-16
Intentional tooth replantation (ITR) is an advanced treatment modality and the procedure of last resort for preserving teeth with inaccessible endodontic or resorptive lesions. ITR is defined as the deliberate extraction of a tooth; evaluation of the root surface, endodontic manipulation, and repair; and placement of the tooth back into its original socket. Case reports, case series, cohort studies, and randomized controlled trials have demonstrated the efficacy of ITR in the retention of natural teeth that are untreatable or difficult to manage with root canal treatment or endodontic microsurgery. However, variations in clinical protocols for ITR exist due to the empirical nature of the original protocols and rapid advancements in the field of oral biology and dental materials. This heterogeneity in protocols may cause confusion among dental practitioners; therefore, guidelines and considerations for ITR should be explicated. This expert consensus discusses the biological foundation of ITR, the available clinical protocols and current status of ITR in treating teeth with refractory apical periodontitis or anatomical aberration, and the main complications of this treatment, aiming to refine the clinical management of ITR in accordance with the progress of basic research and clinical studies; the findings suggest that ITR may become a more consistent evidence-based option in dental treatment.
Humans
;
Tooth Replantation/methods*
;
Consensus
;
Periapical Periodontitis/surgery*
6.Huachansu injection enhances anti-colorectal cancer efficacy of irinotecan and alleviates its induced intestinal toxicity through upregulating UGT1A1-OATP1B3 expression in vitro and in vivo.
Bo JIANG ; Zhao-Yang MENG ; Yu-Jie HU ; Jun-Jun CHEN ; Ling ZONG ; Ling-Yan XU ; Xiang-Qi ZHANG ; Jing-Xian ZHANG ; Yong-Long HAN
Journal of Integrative Medicine 2025;23(5):576-590
OBJECTIVE:
Huachansu injection (HCSI), a promising anti-cancer Chinese medicine injection, has been reported to have the potential for reducing the toxicity of chemotherapy and improving the quality of life for colorectal cancer (CRC) patients. The objective of this study is to explore the synergistic and detoxifying effects of HCSI when used in combination with irinotecan (CPT-11).
METHODS:
To investigate the effect of HCSI on anti-CRC efficacy and intestinal toxicity of CPT-11, we measured changes in the biological behavior of LoVo cells in vitro, and anti-tumor effects in LoVo cell xenograft nude mice models in vivo. Meanwhile, the effect of HCSI on intestinal toxicity and the uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1) expression was investigated in the CPT-11-induced colitis mouse model. Subsequently, we measured the effect of HCSI and its 13 constituent bufadienolides on the expression of UGT1A1 and organic anion transporting polypeptides 1B3 (OATP1B3) in HepG2 cells.
RESULTS:
The combination index (CI) results showed that the combination of HCSI and CPT-11 exhibited a synergistic effect (CI < 1), which significantly suppressing the LoVo cell migration, enhancing G2/M and S phase arrest, and inhibiting tumor growth in vivo. Additionally, the damage to intestinal tissues was attenuated by HCSI in CPT-11-induced colitis model, while the increased expression of UGT1A1 in HepG2 cells and in mouse was observed.
CONCLUSION
The co-therapy with HCSI alleviated the intestinal toxicity induced by CPT-11 and exerted an enhanced anti-CRC effect. The detoxifying mechanism may be related to the increased expression of UGT1A1 and OATP1B3 by HCSI and its bufadienolides components. The findings of this study may serve as a theoretical insights and strategies to improve CRC patient outcomes. Please cite this article as: Jiang B, Meng ZY, Hu YJ, Chen JJ, Zong L, Xu LY, Zhang XQ, Zhang JX, Han YL. Huachansu injection enhances anti-colorectal cancer efficacy of irinotecan and alleviates its induced intestinal toxicity through upregulating UGT1A1-OATP1B3 expression in vitro and in vivo. J Integr Med. 2025; 23(5):576-590.
Irinotecan/therapeutic use*
;
Animals
;
Glucuronosyltransferase/genetics*
;
Humans
;
Colorectal Neoplasms/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice, Nude
;
Mice
;
Up-Regulation/drug effects*
;
Male
;
Xenograft Model Antitumor Assays
;
Mice, Inbred BALB C
;
Hep G2 Cells
;
Cell Line, Tumor
;
Intestines/drug effects*
;
Amphibian Venoms
7.Protective effect and mechanism of Icariin on oxidative stress injury in neurons
Yu-Meng DU ; Si-Min YANG ; Xiao-Tong QIN ; Yan LI ; Rui-Jun JU ; Xiao-Ming PENG ; Xiao-Qiang YAN ; Jie GUAN ; Ling-Yue MA
The Chinese Journal of Clinical Pharmacology 2024;40(13):1869-1873
Objective To explore the protective mechanism of icariin on neuronal oxidative damage,providing a basic pharmacological basis for the treatment of cognitive impairment.Methods Glutamate was used to induce oxidative stress injury in HT22 cells.HT22 cells were divided into control group(normal cultured cells),model group(glutamate injury model)and experimental-L,-M,-H groups(5,10 and 20 μmol·L-1 icariin pretreatment for modeling,respectively).Cell proliferation was detected by cell counting kit-8(CCK-8)method;cytotoxicity was detected by lactate dehydrogenase(LDH)method;reactive oxygen species(ROS)levels were detected by flow cytometry;superoxide dismutase(SOD)levels were detected by biochemical kits;the expression levels of Kelch-like epichlorohydrin-related protein-1(Keap1),nuclear factor E2-related factor 2(Nrf2)were detected by Western blotting;the corresponding mRNA expression was detected by real-time fluorescence quantification polymerose chain reaction.Results The cell viability of control group,model group and experimental-L,-M,-H groups were(100.00±1.31)%,(66.38±2.44)%,(72.07±4.95)%,(82.41±3.57)%and(87.97±4.98)%;LDH release were(0.48±0.52)%,(18.82±2.09)%,(15.32±1.17)%,(10.37±1.39)%and(6.51±0.87)%;ROS level were(14.23±1.13)%,(41.74±1.60)%,(35.69±1.08)%,(33.28±1.69)%and(30.32±2.03)%;SOD levels were(54.84±1.17),(37.95±1.13),(48.02±1.28),(50.56±1.34)and(52.55±1.04)U·mg-1;Keap1 protein levels were 0.36±0.01,0.52±0.03,0.46±0.04,0.39±0.09 and 0.35±0.12;Nrf2 protein levels were 0.29±0.02,0.13±0.08,0.18±0.03,0.21±0.11 and 0.26±0.04;catalase(CAT)mRNA levels were 1.01±0.08,0.81±0.06,0.90±0.04,1.05±0.15 and 1.33±0.26;SOD mRNA levels were 1.09±0.12,0.83±0.03,0.86±0.08,0.94±0.08 and 1.09±0.16.Among the above indicators,the differences between the model group and the control group were statistically significant(all P<0.01);the differences between the experimental-M,-H groups and the model group were statistically significant(P<0.01,P<0.05).Conclusion Icariin may activate the Keap1/Nrf2/antioxidant response element(ARE)signaling pathway,regulate the expression of related proteins,and reduce the level of ROS to effectively alleviate oxidative stress injury in neuronal cells.
8.Clinicopathological Features and Long-Term Prognostic Role of Human Epidermal Growth Factor Receptor-2 Low Expression in Chinese Patients with Early Breast Cancer:A Single-Institution Study
Qing Zi KONG ; Qun Li LIU ; Qin De HUANG ; Tong Yu WANG ; Jie Jing LI ; Zheng ZHANG ; Xi Xi WANG ; Ling Chuan LIU ; Di Ya ZHANG ; Kang Jia SHAO ; Min Yi ZHU ; Meng Yi CHEN ; Mei LIU ; Hong Wei ZHAO
Biomedical and Environmental Sciences 2024;37(5):457-470
Objective This study aimed to comprehensively analyze and compare the clinicopathological features and prognosis of Chinese patients with human epidermal growth factor receptor 2(HER2)-low early breast cancer(BC)and HER2-IHC0 BC. Methods Patients diagnosed with HER2-negative BC(N=999)at our institution between January 2011 and December 2015 formed our study population.Clinicopathological characteristics,association between estrogen receptor(ER)expression and HER2-low,and evolution of HER2 immunohistochemical(IHC)score were assessed.Kaplan-Meier method and log-rank test were used to compare the long-term survival outcomes(5-year follow-up)between the HER2-IHC0 and HER2-low groups. Results HER2-low BC group tended to demonstrate high expression of ER and more progesterone receptor(PgR)positivity than HER2-IHC0 BC group(P<0.001).The rate of HER2-low status increased with increasing ER expression levels(Mantel-Haenszel χ2 test,P<0.001,Pearson's R=0.159,P<0.001).Survival analysis revealed a significantly longer overall survival(OS)in HER2-low BC group than in HER2-IHC0 group(P=0.007)in the whole cohort and the hormone receptor(HR)-negative group.There were no significant differences between the two groups in terms of disease-free survival(DFS).The discordance rate of HER2 IHC scores between primary and metastatic sites was 36.84%. Conclusion HER2-low BC may not be regarded as a unique BC group in this population-based study due to similar clinicopathological features and prognostic roles.
9.Research progress of inducing ferroptosis of cancer stem cells against colorectal cancer
Li-Na GONG ; Meng-Ling YUAN ; Xue-Ying CHENG ; Chen-Yang XU ; Jun PAN ; Qiu-Tong CHEN ; Ling WANG ; Zi-Li ZHANG ; Mei GUO
Chinese Pharmacological Bulletin 2024;40(6):1030-1034
Cancer stem cell(CSC)are the"seed"cells in the occurrence,development,metastasis and recurrence of colorectal cancer.Targeted killing of CSC provides a new target for anti-colorectal cancer therapy.Ferroptosis is an iron-dependent cell death mode due to the abnormal accumulation of intracellular i-ron ions,which results in the massive reactive oxygen species(ROS)and lipid peroxides,leading to cell death.Studies have shown that cancer stem cells are more enriched in iron ions than non-CSC,which provides a new perspective for targeting ferropto-sis in cancer stem cells against colorectal cancer.This article re-views the research progress of inducing CSC ferroptosis in the treatment of colorectal cancer,such as targeted regulation of SLC7A11 expression in CSC,chelating iron in CSC lysosomes,targeting CSC phenotypic plasticity,reversing CSC iron homeo-stasis,and targeting CSC lipid droplet metabolism induce CSC ferroptosis,which provides new ideas for anti-tumor therapy.
10.A new bibenzyl derivative from stems of Dendrobium officinale.
Wei-Tong MENG ; Xiao MENG ; Li-Ting NIU ; Si-Si ZHANG ; Chun-Jie OUYANG ; Chun-Hua DING ; Ling-Juan ZHU ; Xue ZHANG
China Journal of Chinese Materia Medica 2023;48(3):700-706
Eleven compounds were isolated from the 95% ethanol extract of the stems of Dendrobium officinale after water extraction by various modern chromatographic techniques, such as silica gel column chromatography(CC), octadecyl-silica(ODS) CC, Sephadex LH-20 CC, preparative thin layer chromatography(PTLC) and preparative high performance liquid chromatography(PHPLC). According to spectroscopic analyses(MS, 1D-NMR, 2D-NMR) combined with optical rotation data and calculated electronic circular dichroism(ECD), their structures were identified as dendrocandin Y(1), 4,4'-dihydroxybibenzyl(2), 3-hydroxy-4',5-dimethoxybibenzyl(3), 3,3'-dihydroxy-5-methoxybibenzyl(4), 3-hydroxy-3',4',5-trimethoxybibenzyl(5), crepidatin(6), alternariol(7), 4-hydroxy-3-methoxypropiophenone(8), 3-hydroxy-4,5-dimethoxypropiophenone(9), auriculatum A(10) and hyperalcohol(11). Among them, compound 1 was a new bibenzyl derivative; compounds 2 and 7-11 have not been previously reported from Dendrobium plants; compound 6 was reported from D.officinale for the first time. Compounds 3-6 exhibited potent antioxidant activity with IC_(50) values of 3.11-9.05 μmol·L~(-1) in ABTS radical scavenging assay. Compound 4 showed significant inhibitory effect on α-glucosidase, with IC_(50) value of 17.42 μmol·L~(-1), indicating that it boasted hypoglycemic activity.
Dendrobium
;
Biological Assay
;
Chromatography, High Pressure Liquid
;
Chromatography, Thin Layer
;
Bibenzyls

Result Analysis
Print
Save
E-mail