1.Zuoguiwan Mitigates Oxidative Stress in Rat Model of Hyperthyroidism Due to Kidney-Yin Deficiency via DRD4/NOX4 Pathway
Ling LIN ; Qianming LIANG ; Changsheng DENG ; Li RU ; Zhiyong XU ; Chao LI ; Mingshun SHEN ; Yueming YUAN ; Muzi LI ; Lei YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):43-51
ObjectiveTo decipher the mechanism by which Zuoguiwan (ZGW) treat hyperthyroidism in rats with kidney-Yin deficiency based on the dopamine receptor D4 (DRD4)/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) signaling pathway. MethodsThe rat model of kidney-Yin deficiency was induced by unilateral intramuscular injection of dexamethasone (0.35 mg·kg-1). After successful modeling, the rats were randomized into model, methimazole (positive control, 5 mg·kg-1), low-, medium-, and high-dose (1.85, 3.70, 7.40 g·kg-1, respectively) ZGW, and normal control groups. After 21 days of continuous gavage, the behavioral indexes and body weight changes of rats were evaluated. The pathological changes of the renal tissue were observed by hematoxylin-eosin staining. The serum levels of thyroid hormones [triiodothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH)], renal function indexes [serum creatine (Scr) and blood urea nitrogen (BUN)], energy metabolism markers [cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)], and oxidative stress-related factors [superoxide dismutase (SOD), malondialdehyde (MDA), and NADPH)] were measured by enzyme-linked immunosorbent assay (ELISA). Western blot was employed to analyze the expression of DRD4, NOX4, mitochondrial respiratory chain complex proteins [NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) and cytochrome C oxidase subunit 4 (COX4)], and inflammation-related protein [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), p38 mitogen-activated protein kinase (MAPK)] pathway in the renal tissue. ResultsCompared with the normal group, the model group showed mental malaise, body weight decreases (P<0.01), inflammatory cell infiltration in the renal tissue, a few residual parotid glands in the thyroid, elevations in serum levels of T3, T4, Scr, BUN, cAMP, cAMP/cGMP, MDA, and NADPH (P<0.01), down-regulation in protein levels of TSH, SOD, and DRD4 (P<0.05, P<0.01), and up-regulation in expression of NOX4, p-p38 MAPK/p38 MAPK, and inflammatory factors (P<0.01). Compared with the model group, ZGW increased the body weight (P<0.05, P<0.01), reduced the infiltration of renal interstitial inflammatory cells, restored the thyroid structure and follicle size, lowered the serum levels of T3, T4, Scr, BUN, cAMP, cAMP/cGMP, MDA and NADPH (P<0.05, P<0.01), up-regulated the expression of TSH, SOD and DRD4 (P<0.05, P<0.01), and down-regulated the expression of NOX4, p-p38 MAPK/p38 MAPK, and inflammatory factors (P<0.05, P<0.01). Moreover, high-dose ZGW outperformed methimazole (P<0.05). ConclusionBy activating DRD4, ZGW can inhibit the expression of NOX4 mediated by the p38 MAPK pathway, reduce oxidative stress and inflammatory response, thereby ameliorating the pathological state of hyperthyroidism due to kidney-Yin deficiency. This study provides new molecular mechanism support for the clinical application of ZGW.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
4.Clinical study of salvage second allogeneic hematopoietic stem cell transplantation in 17 cases
Wenqiong WANG ; Wei LIU ; Huihui LIU ; Xiaoying YANG ; Shuanglian XIE ; Hongtao LING ; Yiming ZHAO ; Yujun DONG
Organ Transplantation 2026;17(1):124-132
Objective To summarize and analyze the efficacy and influencing factors of second allogeneic hematopoietic stem cell transplantation (allo-HSCT) for acute leukemia relapsing after the first allo-HSCT. Methods Clinical data of 17 patients with acute leukemia who underwent second allo-HSCT at Peking University First Hospital from January 2005 to December 2024 were retrospectively analyzed. Results Among the 17 patients, 7 achieved long-term disease-free survival after second transplantation. The median progression-free survival after successful second transplantation was 7 months (range 8 days to 69 months). The relapse fatality was 24%, and the transplant-related fatality was 35%. Conclusions Second transplantation is an effective treatment for relapsed and refractory acute leukemia, but the relapse fatality and transplant-related fatality remain high. Patient age, time of relapse after the first transplantation and disease status before second transplantation are all factors that affect the efficacy of second transplantation. Younger age, late relapse and complete remission of disease before second transplantation are all beneficial for long-term disease-free survival after second transplantation.
5.Impact of Maxing Kugan Decoction on Inflammatory Response and Apoptosis in Oleic Acid-induced Acute Lung Injury in Rats via p38 MAPK/NF-κB Signaling Pathway
Taiqiang JIAO ; Yi NAN ; Ling YUAN ; Jiaqing LI ; Yang NIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):108-116
ObjectiveTo investigate the effects of Maxing Kugan decoction (MKD) on inflammatory response and apoptosis in rats with oleic acid (OA)-induced acute lung injury (ALI) and explore its mechanism of action. MethodsSixty Sprague-Dawley (SD) rats were randomly assigned into six groups: a control group, a model group, a dexamethasone-treated group (2 mg·kg-1), and three MKD-treated groups at low, medium, and high doses (3.1, 6.2,12.4 g·kg-1). Each group was administered either an equivalent volume of normal saline or the corresponding concentration of MKD by gavage for seven consecutive days. The model group and each administration group were used to establish the ALI model by tail vein injection of OA (0.2 mL·kg-1). Twelve hours after modeling, blood gas analyses were conducted, and the wet-to-dry (W/D) weight ratio of lung tissue was measured for each group. Additionally, enzyme-linked immunosorbent assay (ELISA) was employed to quantify the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the bronchoalveolar lavage fluid (BALF) of the rats. Cell damage and apoptosis in lung tissue were examined via hematoxylin-eosin (HE) staining and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assays, and the results were subsequently scored. The expression levels of the p38 mitogen-activated protein kinase (p38 MAPK)/nuclear factor kappa-B (NF-κB) signaling pathway and apoptosis-related proteins and mRNAs were assessed using Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the control group, the model group exhibited a significant decrease in partial pressure of oxygen (PaO2), blood oxygen saturation (SaO2), and oxygenation index (PaO2/FiO2), along with a marked increase in partial pressure of carbon dioxide (PaCO2) and lung W/D ratio (P<0.01). Additionally, levels of TNF-α, IL-6, and IL-1β in BALF were significantly elevated (P<0.01). Histopathological analysis of lung tissue showed significant inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Pronounced increases were observed in the mRNA expression levels of p38 MAPK, NF-κB p65, inhibitor of NF-κB (IκBα), B-cell lymphoma-2 associated x protein (Bax), and Caspases-3, as well as the protein expression levels of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3, while the mRNA and protein expression of Bcl-2 was downregulated (P<0.01). Compared with the model group, MKD significantly elevated PaO2, SaO2, and PaO2/FiO2 while reducing PaCO2 and W/D ratio in rats (P<0.01). It also greatly reduced TNF-α, IL-6, and IL-1β levels in BALF (P<0.01) and alleviated inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Additionally, it downregulated the mRNA expression of p38 MAPK, NF-κB p65, IκBα, Bax, Caspases-3, as well as protein expression of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3 in lung tissue (P<0.05, P<0.01), while significantly upregulating mRNA and protein expression of Bcl-2 (P<0.01). ConclusionMKD exerts a protective effect on OA-induced ALI rats, potentially through the regulation of the p38 MAPK/NF-κB signaling pathway to inhibit inflammation and apoptosis.
6.Impact of Maxing Kugan Decoction on Inflammatory Response and Apoptosis in Oleic Acid-induced Acute Lung Injury in Rats via p38 MAPK/NF-κB Signaling Pathway
Taiqiang JIAO ; Yi NAN ; Ling YUAN ; Jiaqing LI ; Yang NIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):108-116
ObjectiveTo investigate the effects of Maxing Kugan decoction (MKD) on inflammatory response and apoptosis in rats with oleic acid (OA)-induced acute lung injury (ALI) and explore its mechanism of action. MethodsSixty Sprague-Dawley (SD) rats were randomly assigned into six groups: a control group, a model group, a dexamethasone-treated group (2 mg·kg-1), and three MKD-treated groups at low, medium, and high doses (3.1, 6.2,12.4 g·kg-1). Each group was administered either an equivalent volume of normal saline or the corresponding concentration of MKD by gavage for seven consecutive days. The model group and each administration group were used to establish the ALI model by tail vein injection of OA (0.2 mL·kg-1). Twelve hours after modeling, blood gas analyses were conducted, and the wet-to-dry (W/D) weight ratio of lung tissue was measured for each group. Additionally, enzyme-linked immunosorbent assay (ELISA) was employed to quantify the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the bronchoalveolar lavage fluid (BALF) of the rats. Cell damage and apoptosis in lung tissue were examined via hematoxylin-eosin (HE) staining and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assays, and the results were subsequently scored. The expression levels of the p38 mitogen-activated protein kinase (p38 MAPK)/nuclear factor kappa-B (NF-κB) signaling pathway and apoptosis-related proteins and mRNAs were assessed using Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the control group, the model group exhibited a significant decrease in partial pressure of oxygen (PaO2), blood oxygen saturation (SaO2), and oxygenation index (PaO2/FiO2), along with a marked increase in partial pressure of carbon dioxide (PaCO2) and lung W/D ratio (P<0.01). Additionally, levels of TNF-α, IL-6, and IL-1β in BALF were significantly elevated (P<0.01). Histopathological analysis of lung tissue showed significant inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Pronounced increases were observed in the mRNA expression levels of p38 MAPK, NF-κB p65, inhibitor of NF-κB (IκBα), B-cell lymphoma-2 associated x protein (Bax), and Caspases-3, as well as the protein expression levels of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3, while the mRNA and protein expression of Bcl-2 was downregulated (P<0.01). Compared with the model group, MKD significantly elevated PaO2, SaO2, and PaO2/FiO2 while reducing PaCO2 and W/D ratio in rats (P<0.01). It also greatly reduced TNF-α, IL-6, and IL-1β levels in BALF (P<0.01) and alleviated inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Additionally, it downregulated the mRNA expression of p38 MAPK, NF-κB p65, IκBα, Bax, Caspases-3, as well as protein expression of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3 in lung tissue (P<0.05, P<0.01), while significantly upregulating mRNA and protein expression of Bcl-2 (P<0.01). ConclusionMKD exerts a protective effect on OA-induced ALI rats, potentially through the regulation of the p38 MAPK/NF-κB signaling pathway to inhibit inflammation and apoptosis.
7.Accuracy comparison of different calculation formulas for intraocular lens degree in cataract patients with short axial length under different biometric parameters
Yang XIA ; Yunxia LIN ; Ling XU
International Eye Science 2025;25(1):112-117
AIM: To compare the refractive prediction accuracy of 7 intraocular lens(IOL)calculation formulas in the cataract eyes with short axial length(AL)at different corneal curvatures and anterior chamber depth(ACD), and analyze relevant influencing factors contributing to prediction errors.METHODS: A retrospective analysis was performed for 125 patients(125 eyes)with a short AL, who received cataract phacoemulsification at Shenyang He Eye Specialist Hospital from November 2020 to December 2021. According to the keratometry(Km), they were divided into low flat Km group(≤45.5 D), medium and high Km group(45.5 D
8.Proteomics and Network Pharmacology Reveal Mechanism of Xiaoer Huatan Zhike Granules in Treating Allergic Cough
Youqi DU ; Yini XU ; Jiajia LIAO ; Chaowen LONG ; Shidie TAI ; Youwen DU ; Song LI ; Shiquan GAN ; Xiangchun SHEN ; Ling TAO ; Shuying YANG ; Lingyun FU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):69-79
ObjectiveTo explore the pharmacological mechanism involved in the treatment of allergic cough (AC) by Xiaoer Huatan Zhike granules (XEHT) based on proteomics and network pharmacology. MethodsAfter sensitization by intraperitoneal injection of 1 mL suspension containing 2 mg ovalbumin (OVA) and 100 mg aluminum hydroxide, a guinea pig model of allergic cough was constructed by nebulization with 1% OVA. The modeled guinea pigs were randomized into the model, low-, medium- and high-dose (1, 5, 20 g·kg-1, respectively) XEHT, and sodium montelukast (1 mg·kg-1) groups (n=6), and another 6 guinea pigs were selected as the blank group. The guinea pigs in drug administration groups were administrated with the corresponding drugs by gavage, and those in the blank and model groups received the same volume of normal saline by gavage, 1 time·d-1. After 10 consecutive days of drug administration, the guinea pigs were stimulated by 1% OVA nebulization, and the coughs were observed. The pathological changes in the lung tissue were observed by hematoxylin-eosin staining. The enzyme-linked immunosorbent assay was performed to measure the levels of C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), superoxide dismutase (SOD), and malondialdehyde (MDA) in the bronchoalveolar lavage fluid (BALF) and immunoglobulin G (IgG) and immunoglobulin A (IgA) in the serum. Immunohistochemistry (IHC) was employed to observe the expression of IL-6 and TNF-α in the lung tissue. Transmission electron microscopy was employed observe the alveolar type Ⅱ epithelial cell ultrastructure. Real-time PCR was employed to determine the mRNA levels of IL-6, interleukin-1β (IL-1β), and TNF-α in the lung tissue. Label-free proteomics was used to detect the differential proteins among groups. Network pharmacology was used to predict the targets of XEHT in treating AC. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to search for the same pathways from the results of proteomics and network pharmacology. ResultsCompared with the blank group, the model group showed increased coughs (P<0.01), elevated levels of CRP, TNF-α, IL-6, and MDA and lowered level of SOD in the BALF (P<0.05, P<0.01), elevated levels of IgA and IgG in the serum (P<0.05, P<0.01), congestion of the lung tissue and infiltration of inflammatory cells, increased expression of IL-6 and TNF-α (P<0.01), large areas of low electron density edema in type Ⅱ epithelial cells, obvious swelling and vacuolization of the organelles, karyopyknosis or sparse and dissolved chromatin, and up-regulated mRNA levels of IL-6, IL-1β, and TNF-α (P<0.01). Compared with the model group, the drug administration groups showed reduced coughs (P<0.01), lowered levels of CRP, TNF-α, IL-6, and MDA and elevated level of SOD in the BALF (P<0.05, P<0.01), alleviated lung tissue congestion, inflammatory cell infiltration, and type Ⅱ epithelial cell injury, and decreased expression of IL-6 and TNF-α (P<0.01). In addition, the medium-dose XEHT group and the montelukast sodium group showcased lowered serum levels of IgA and IgG (P<0.05, P<0.01). The medium- and high-dose XEHT groups and the montelukast sodium showed down-regulated mRNA levels of IL-6, IL-1β, and TNF-α and the low-dose XEHT group showed down-regulated mRNA levels of IL-6 and TNF-α (P<0.05, P<0.01). Phospholipase D, mammalian target of rapamycin (mTOR), and epidermal growth factor receptor family of receptor tyrosine kinase (ErbB) signaling pathways were the common pathways predicted by both proteomics and network pharmacology. ConclusionProteomics combined with network pharmacology reveal that XEHT can ameliorate AC by regulating the phospholipase D, mTOR, and ErbB signaling pathways.
9.Weichang'an Prescription-containing Serum Induces Ferroptosis of Gastric Cancer MKN-45 Cells
Xin LI ; Jinzu YANG ; Jianxin QIAN ; Li TAO ; Ling CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):132-139
ObjectiveTo observe the effect of Weichang'an prescription-containing serum on ferroptosis of human gastric cancer cells and explore the possible mechanism. MethodsSD rats were administrated with 18, 36, 72 g·kg-1·d-1 Weichang'an prescription by gavage for preparation of serum samples containing different doses of Weichang'an prescription, which were then used to treat MKN-45 cells. The cell proliferation was examined by the cell counting kit-8 (CCK-8). In addition, inhibitors of apoptosis, necroptosis, and ferroptosis were added, and the survival of the cells treated with the serum samples was observed. The fluorescent probe dichlorodihydrofluorescein diacetate (DCF-DA) and the lipid peroxidation sensor C11-BODIPY were employed to detect the intracellular levels of reactive oxygen species (ROS) and lipid peroxidation, respectively. The levels of ferrous ion (Fe2+), glutathione (GSH), and malondialdehyde (MDA) were detected by enzyme-linked immunosorbent assay (ELISA). Real-time PCR and Western blotting were employed to determine the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), aldo-keto reductase family 1 member B1 (AKR1B1), glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 4 (ACSL4), signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinase (MAPK). ResultsCompared with the blank group, Weichang'an prescription-containing serum decreased the viability of MKN-45 cells (P<0.05, P<0.01) in a time- and dose-dependent manner. Compared with the Weichang'an prescription group, the apoptosis inhibitor+Weichang'an prescription group and the ferroptosis inhibitor+Weichang'an prescription group showed increased cell viability (P<0.05, P<0.01). Compared with the blank group, Weichang'an prescription elevated the levels of ROS, lipid peroxidation, and intracellular Fe2+ and MDA (P<0.05, P<0.01) and lowered the level of GSH (P<0.05, P<0.01) in a dose-dependent manner. Compared with the blank group, Weichang'an prescription down-regulated the mRNA and protein levels of Nrf2, AKR1B1, and GPX4 (P<0.05, P<0.01) and up-regulated the mRNA and protein levels of ACSL4 (P<0.05, P<0.01) in a dose-dependent manner. Compared with the blank group, Weichang'an prescription down-regulated the protein levels of p-STAT3 and p-ERK (P<0.05, P<0.01) in a dose-dependent manner. ConclusionThe Weichang'an prescription-containing serum can promote the ferroptosis and inhibit the proliferation of MKN-45 cells by regulating the STAT3 and MAPK pathways.
10.Research progress on the molecular mechanism and therapeutic targets of ferroptosis in acute kidney injury
Yang ZHANG ; Fanyi HE ; Kongchun SUN ; Rui YANG ; Xuezhi YU ; Ling ZHANG ; Ruixiang CHEN ; Baochun SHEN
Organ Transplantation 2025;16(2):315-321
Acute kidney injury (AKI) is one of the most common and severe nephropathy syndromes in clinical practice and also one of the most common serious complications after organ transplantation, with high incidence and fatality. Iron is an essential trace element in the body. Ferroptosis is a form of programmed cell death induced by the accumulation of iron-mediated lipid peroxidation, and its occurrence is closely related to iron metabolism, lipid metabolism, amino acid metabolism and multiple signaling pathways. Recent studies have shown that ferroptosis plays a key role in the occurrence and development of AKI and provides therapeutic targets for AKI. This article summarizes the regulatory mechanism of ferroptosis and its role in AKI, as well as the compounds that play an important role in the prevention and treatment of AKI by inhibiting ferroptosis, providing new ideas for the future treatment and research of AKI.

Result Analysis
Print
Save
E-mail