1.Study on the traditional Chinese medicine syndromes in 757 cases of children with hepatolenticular degeneration based on factor analysis and cluster analysis
Daiping HUA ; Han WANG ; Qiaoyu XUAN ; Lanting SUN ; Ling XIN ; Xin YIN ; Wenming YANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):303-311
Objective:
To explore the distribution of traditional Chinese medicine (TCM) syndromes in children with hepatolenticular degeneration (Wilson disease, WD) based on factor analysis and cluster analysis.
Methods:
From November 2018 to November 2023, general information (gender, age of admission, age of onset, course of disease, clinical staging, Western medicine clinical symptoms, and family history) and TCM four-examination informations (symptoms and signs) were retrospectively collected from 757 cases of children with WD at the First Affiliated Hospital of Anhui University of Chinese Medicine, and factor analysis and cluster analysis were used to investigate TCM syndromes in children with WD.
Results:
A total of 757 children with WD were included, of which 483 were male and 274 were female; the median age at admission was 12.58 years, the median age at onset was 8.33 years, and the median course of disease was 24.37 months; clinical typing result indicated 506 cases of hepatic type, 133 cases of brain type, 99 cases of mixed-type, and 19 cases of other type; 36.46% of the children had no clinical symptoms (elevated aminotransferases or abnormalities in copper biochemistry); a total of 177 cases had a definite family history, and 10 cases had a suspected family history. Forty-three TCM four-examination information were obtained, with the top 10 in descending order being feeling listless and weak, brown urine, slow action, inappetence, dim complexion, slurred speech, angular salivation, body weight loss, hand and foot tremors, and abdominal fullness. In children with WD, the syndrome element of disease location was primarily characterized by the liver, involving the spleen and kidney, and the syndrome elements of disease nature were characterized by dampness, heat, and yin deficiency. Based on factor analysis and cluster analysis, five TCM syndromes were derived, which were, in order, syndrome of dampness-heat accumulation (265 cases, 35.01%), syndrome of yin deficiency of the liver and kidney (202 cases, 26.68%), syndrome of liver hyperactivity with spleen deficiency (185 cases, 24.44%), syndrome of qi and blood deficiency (79 cases, 10.44%), and syndrome of yang deficiency of the spleen and kidney (26 cases, 3.43%).
Conclusion
The TCM syndromes of children with WD were primarily syndromes of dampness-heat accumulation, yin deficiency of the liver and kidney, and liver hyperactivity with spleen deficiency. The liver was the main disease location, and the disease nature was characterized by deficiency in origin and excess in superficiality, excess and deficiency mixed. These findings suggest that treating children with WD should be based on the liver while also considering the spleen and kidney.
2.Study on Kinetic and Static Tasks With Different Resistance Coefficients in Post-stroke Rehabilitation Training Based on Functional Near-infrared Spectroscopy
Ling-Di FU ; Jia-Xuan DOU ; Ting-Ting YING ; Li-Yong YIN ; Min TANG ; Zhen-Hu LIANG
Progress in Biochemistry and Biophysics 2025;52(7):1890-1903
ObjectiveFunctional near-infrared spectroscopy (fNIRS), a novel non-invasive technique for monitoring cerebral activity, can be integrated with upper limb rehabilitation robots to facilitate the real-time assessment of neurological rehabilitation outcomes. The rehabilitation robot is designed with 3 training modes: passive, active, and resistance. Among these, the resistance mode has been demonstrated to yield superior rehabilitative outcomes for patients with a certain level of muscle strength. The control modes in the resistance mode can be categorized into dynamic and static control. However, the effects of different control modes in the resistance mode on the motor function of patients with upper limb hemiplegia in stroke remain unclear. Furthermore, the effects of force, an important parameter of different control modes, on the activation of brain regions have rarely been reported. This study investigates the effects of dynamic and static resistance modes under varying resistance levels on cerebral functional alterations during motor rehabilitation in post-stroke patients. MethodsA cohort of 20 stroke patients with upper limb dysfunction was enrolled in the study, completing preparatory adaptive training followed by 3 intensity-level tasks across 2 motor paradigms. The bilateral prefrontal cortices (PFC), bilateral primary motor cortices (M1), bilateral primary somatosensory cortices (S1), and bilateral premotor and supplementary motor cortices (PM) were examined in both the resting and motor training states. The lateralization index (LI), phase locking value (PLV), network metrics were employed to examine cortical activation patterns and topological properties of brain connectivity. ResultsThe data indicated that both dynamic and static modes resulted in significantly greater activation of the contralateral M1 area and the ipsilateral PM area when compared to the resting state. The static patterns demonstrated a more pronounced activation in the contralateral M1 in comparison to the dynamic patterns. The results of brain network analysis revealed significant differences between the dynamic and resting states in the contralateral PFC area and contralateral M1 area (F=4.709, P=0.038), as well as in the contralateral PM area and ipsilateral M1 area (F=4.218, P=0.049). Moreover, the findings indicated a positive correlation between the activation of the M1 region and the increase in force in the dynamic mode, which was reversed in the static mode. ConclusionBoth dynamic and static resistance training modes have been demonstrated to activate the corresponding brain functional regions. Dynamic resistance modes elicit greater oxygen changes and connectivity to the region of interest (ROI) than static resistance modes. Furthermore, the effects of increasing force differ between the two modes. In patients who have suffered a stroke, dynamic modes may have a more pronounced effect on the activation of exercise-related functional brain regions.
3.Auricular electroacupuncture for post-stroke dysphagia in pharyngeal phase: a randomized controlled trial.
Xiangliang LI ; Yuhong ZHANG ; Haipeng JIN ; Ling GAO ; Xuan ZHUANG ; Yong WANG ; Youhong JI
Chinese Acupuncture & Moxibustion 2025;45(12):1705-1710
OBJECTIVE:
To observe the clinical efficacy of auricular electroacupuncture for post-stroke dysphagia in the pharyngeal phase.
METHODS:
Eighty-two patients with post-stroke dysphagia in the pharyngeal phase were randomized into an auricular electroacupuncture group (41 cases) and a swallowing electrical stimulation group (41 cases, 1 case dropped out). In the auricular electroacupuncture group, electroacupuncture was applied at auricular points, i.e. Xin (CO15) and Yanhou (TG3), using disperse-dense wave, in frequency of 2 Hz/10 Hz, 30 min a time. In the swallowing electrical stimulation group, swallowing electrical stimulation was delivered for 30 min a time. Both groups were treated once daily for 4 weeks. The functional oral intake scale (FOIS) grade, as well as the hyolaryngeal complex displacement, the pharyngeal constriction rate (PCR) and the pharyngeal delay time (PDT) under video fluoroscopic study of swallowing (VFSS) were observed before and after treatment, and the clinical efficacy was evaluated in the two groups.
RESULTS:
Compared before treatment, the FOIS grade was improved (P<0.01), the forward and upward displacement amplitude of hyoid bone and thyroid cartilage was increased (P<0.05), and the PCR and PDT were decreased (P<0.05) after treatment in the two groups. After treatment, compared with the swallowing electrical stimulation group, the FOIS grade was superior (P<0.01), the upward displacement amplitude of hyoid bone and thyroid cartilage was larger (P<0.05) and the PCR and PDT were lower (P<0.05) in the auricular electroacupuncture group. The total effective rate was 85.4% (35/41) in the auricular electroacupuncture group, which was higher than 62.5% (25/40) in the swallowing electrical stimulation group (P<0.05).
CONCLUSION
Auricular electroacupuncture can effectively trigger pharyngeal initiation and improve post-stroke dysphagia in the pharyngeal phase.
Humans
;
Electroacupuncture
;
Male
;
Deglutition Disorders/etiology*
;
Female
;
Middle Aged
;
Aged
;
Stroke/physiopathology*
;
Pharynx/physiopathology*
;
Acupuncture, Ear
;
Acupuncture Points
;
Deglutition
;
Treatment Outcome
;
Adult
4.Molecular Mechanisms Underlying Sleep Deprivation-induced Acceleration of Alzheimer’s Disease Pathology
Si-Ru YAN ; Ming-Yang CAI ; Ya-Xuan SUN ; Qing HUO ; Xue-Ling DAI
Progress in Biochemistry and Biophysics 2025;52(10):2474-2485
Sleep deprivation (SD) has emerged as a significant modifiable risk factor for Alzheimer’s disease (AD), with mounting evidence demonstrating its multifaceted role in accelerating AD pathogenesis through diverse molecular, cellular, and systemic mechanisms. SD is refined within the broader spectrum of sleep-wake and circadian disruption, emphasizing that both acute total sleep loss and chronic sleep restriction destabilize the homeostatic and circadian processes governing glymphatic clearance of neurotoxic proteins. During normal sleep, concentrations of interstitial Aβ and tau fall as cerebrospinal fluid oscillations flush extracellular waste; SD abolishes this rhythm, causing overnight rises in soluble Aβ and tau species in rodent hippocampus and human CSF. Orexinergic neurons sustain arousal, and become hyperactive under SD, further delaying sleep onset and amplifying Aβ production. At the molecular level, SD disrupts Aβ homeostasis through multiple converging pathways, including enhanced production via beta-site APP cleaving enzyme 1 (BACE1) upregulation, coupled with impaired clearance mechanisms involving the glymphatic system dysfunction and reduced Aβ-degrading enzymes (neprilysin and insulin-degrading enzyme). Cellular and histological analyses revealed that these proteinopathies are significantly exacerbated by SD-induced neuroinflammatory cascades characterized by microglial overactivation, astrocyte reactivity, and sustained elevation of pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) through NF‑κB signaling and NLRP3 inflammasome activation, creating a self-perpetuating cycle of neurotoxicity. The synaptic and neuronal consequences of chronic SD are particularly profound and potentially irreversible, featuring reduced expression of critical synaptic markers (PSD95, synaptophysin), impaired long-term potentiation (LTP), dendritic spine loss, and diminished neurotrophic support, especially brain-derived neurotrophic factor (BDNF) depletion, which collectively contribute to progressive cognitive decline and memory deficits. Mechanistic investigations identify three core pathways through which SD exerts its neurodegenerative effects: circadian rhythm disruption via BMAL1 suppression, orexin system hyperactivity leading to sustained wakefulness and metabolic stress, and oxidative stress accumulation through mitochondrial dysfunction and reactive oxygen species overproduction. The review critically evaluates promising therapeutic interventions including pharmacological approaches (melatonin, dual orexin receptor antagonists), metabolic strategies (ketogenic diets, and Mediterranean diets rich in omega-3 fatty acids), lifestyle modifications (targeted exercise regimens, cognitive behavioral therapy for insomnia), and emerging technologies (non-invasive photobiomodulation, transcranial magnetic stimulation). Current research limitations include insufficient understanding of dose-response relationships between SD duration/intensity and AD pathology progression, lack of long-term longitudinal clinical data in genetically vulnerable populations (particularly APOE ε4 carriers and those with familial AD mutations), the absence of standardized SD protocols across experimental models that accurately mimic human chronic sleep restriction patterns, and limited investigation of sex differences in SD-induced AD risk. The accumulated evidence underscores the importance of addressing sleep disturbances as part of multimodal AD prevention strategies and highlights the urgent need for clinical trials evaluating sleep-focused interventions in at-risk populations. The review proposes future directions focused on translating mechanistic insights into precision medicine approaches, emphasizing the need for biomarkers to identify SD-vulnerable individuals, chronotherapeutic strategies aligned with circadian biology, and multi-omics integration across sleep, proteostasis and immune profiles may delineate precision-medicine strategies for at-risk populations. By systematically examining these critical connections, this analysis positions sleep quality optimization as a viable strategy for AD prevention and early intervention while providing a comprehensive roadmap for future mechanistic and interventional research in this rapidly evolving field.
5.Mechanism of Gegen Qinlian Decoction in treatment of ulcerative colitis through affecting bile acid synthesis.
Yi-Xuan SUN ; Jia-Li FAN ; Jing-Jing WU ; Li-Juan CHEN ; Jiang-Hua HE ; Wen-Juan XU ; Ling DONG
China Journal of Chinese Materia Medica 2025;50(10):2769-2777
Gegen Qinlian Decoction(GQD) is a classic prescription for the clinical treatment of ulcerative colitis(UC). This study, based on the differences in efficacy observed in UC mice under different level of bile acids treated with GQD, aims to clarify the impact of bile acids on UC and its therapeutic effects. It further investigates the expression of bile acid receptors in the liver of UC mice, and preliminarily reveals the mechanism through which GQD affects bile acid synthesis in the treatment of UC. A UC mouse model was established using dextran sulfate sodium(DSS) induction. The efficacy of GQD was evaluated by assessing the general condition, disease activity index(DAI) score, colon length, and histopathological changes in colon tissue via hematoxylin and eosin(HE) staining. ELISA and Western blot were used to evaluate the inflammatory response in colon tissue. The total bile acid(TBA) level and liver damage were quantified using an automatic biochemistry analyzer. The expression levels of bile acid receptors and bile acid synthetases in liver tissue were detected by Western blot and RT-qPCR. The results showed that compared with the model group, GQD treatment significantly improved the DAI score, colon shortening, and histopathological damage in UC mice. The levels of pro-inflammatory factors TNF-α and IL-6 in the colon were significantly reduced. Serum TBA levels were significantly decreased, while alkaline phosphatase(ALP) levels significantly increased. After administration of cholic acid(CA), UC symptoms in the CA + GQD group were significantly aggravated compared with the GQD group. The DAI score, degree of weight loss, colon injury, serum TBA, and liver injury markers all increased significantly. However, compared with the CA group, the CA + GQD group showed a marked reduction in TBA levels and a significant improvement in UC-related symptoms, indicating that GQD can alleviate UC damage exacerbated by CA. Further investigation into the expression of bile acid receptors and synthetases in the liver showed that under GQD treatment, the expression of farnesoid X receptor(FXR) and small heterodimer partner(SHP) significantly increased, while the expression of G protein-coupled receptor 5(TGR5) and cholesterol 7α-hydroxylase(Cyp7A1) significantly decreased. These findings suggest that GQD may affect bile acid receptors and synthetases, inhibiting bile acid synthesis through the FXR/SHP pathway to treat UC.
Animals
;
Colitis, Ulcerative/genetics*
;
Bile Acids and Salts/biosynthesis*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Male
;
Humans
;
Receptors, Cytoplasmic and Nuclear/metabolism*
;
Colon/metabolism*
;
Disease Models, Animal
;
Liver/metabolism*
;
Mice, Inbred C57BL
6.Value of different calculation methods for weight growth velocity in predicting long-term neurological and physical development outcomes in preterm infants.
Pei-Hong JI ; Xuan SUN ; Jin-Zhi GAO ; Ling CHEN
Chinese Journal of Contemporary Pediatrics 2025;27(2):165-170
OBJECTIVES:
To investigate the value of weight growth velocity, calculated using the Patel exponential model and the Z-score change method, in predicting the neurological and physical development outcomes of preterm infants with a gestational age of <30 weeks in the long term.
METHODS:
A retrospective study was conducted involving preterm infants with a gestational age of <30 weeks who were hospitalized and treated in the Department of Neonatology at Tongji Hospital, Huazhong University of Science and Technology, from January 2017 to June 2022, and were followed up at the outpatient service more than 18 months of age. The preterm infants were divided into high and low rate groups based on the two calculation methods, and the two methods were compared regarding their predictive value for neurological and physical development outcomes in the long term.
RESULTS:
The average age of the last follow-up was (23.0±3.6) months. For neurological development, according to the Patel exponential model, the low rate group exhibited a significantly higher abnormal rate in the fine motor domain compared to the high rate group (P<0.05). Using the Z-score change method, the low rate group had significantly higher abnormal rates in both gross motor and fine motor domains, and significantly lower developmental quotients for gross motor, fine motor, and adaptive behavior domains compared to the high rate group (P<0.05). For physical development, there were no significant differences in body length, body weight, head circumference, or the incidence rate of growth restriction between the low rate and high rate groups identified by either method (P>0.05).
CONCLUSIONS
Weight growth velocity calculated using the Z-score change method is more effective in predicting long-term neurological outcomes in preterm infants, while weight growth velocity derived from both methods shows no significant association with long-term physical development outcomes.
Humans
;
Infant, Premature/growth & development*
;
Retrospective Studies
;
Infant, Newborn
;
Child Development
;
Male
;
Female
;
Body Weight
;
Infant
;
Nervous System/growth & development*
7.Epidemiological characteristics of respiratory syncytial virus infection in children in Hebei Province.
Xuan WANG ; Su-Kun LU ; Jian-Hua LIU ; Jin-Feng SHUAI ; Kun-Ling HUANG ; Bo NIU ; Li-Jie CAO ; Xiao-Wei CUI
Chinese Journal of Contemporary Pediatrics 2025;27(10):1199-1204
OBJECTIVES:
To study the epidemiological characteristics of respiratory syncytial virus (RSV) infection in hospitalized children with community-acquired pneumonia (CAP) in Hebei Province.
METHODS:
Hospitalized children with CAP who tested positive for RSV and were admitted to Hebei Children's Hospital from various cities and counties across Hebei Province between January 2019 and December 2023 were included in the study. Clinical data were collected and analyzed to assess epidemiological characteristics.
RESULTS:
The clinical data of 43 978 children with CAP were collected, with an overall RSV detection rate of 25.98%. The detection rate was higher during the implementation of non-pharmaceutical interventions (NPIs) (30.60%) than in the non-NPIs period. Winter and spring were the primary epidemic seasons for RSV each year except in 2022. The detection rate in males (26.62%) was higher than in females (25.06%) (P<0.001). The highest detection rate (59.18%) was found in infants aged 29 days to <1 year. Single RSV infection was more common, with rhinovirus being the most frequent co-infection.
CONCLUSIONS
The overall RSV detection rate in Hebei Province is influenced by NPIs, being higher during their implementation. RSV predominantly circulates in winter and spring. The detection rate of RSV is higher in males and infants. RSV infection is primarily single, most often co-occurring with rhinovirus.
Humans
;
Respiratory Syncytial Virus Infections/epidemiology*
;
Female
;
Male
;
Infant
;
Child, Preschool
;
Seasons
;
China/epidemiology*
;
Infant, Newborn
;
Community-Acquired Infections/epidemiology*
;
Child
8.Epidemiological characteristics of human metapneumovirus and risk factors for severe pneumonia in hospitalized children.
Yi-Xuan WANG ; Su-Kun LU ; Kun-Ling HUANG ; Li-Jie CAO ; Ya-Juan CHU ; Bo NIU
Chinese Journal of Contemporary Pediatrics 2025;27(10):1205-1211
OBJECTIVES:
To investigate the epidemiological characteristics of human metapneumovirus (hMPV) and the risk factors for severe pneumonia in hospitalized children.
METHODS:
The epidemiological characteristics of hMPV in hospitalized children at Hebei Children's Hospital from January 2019 to December 2023 were retrospectively analyzed. The clinical data of hospitalized children with hMPV infection from April to December 2023 were included, and independent risk factors for severe pneumonia were identified through logistic regression.
RESULTS:
A total of 44 092 children were tested, with an hMPV positive rate of 7.30% (3 220/44 092). Children aged 3-6 years constituted the largest proportion (40.93%, 1 318/3 220) among hMPV-positive cases. The detection rate varied significantly by year (P<0.001), peaking in 2022 (12.35%, 978/7 919). The peak season of the epidemic was winter and spring from 2019 to 2021, but shifted to spring and summer from 2022 to 2023. The proportion of co-infection was 38.70% (1 246/3 220), primarily with rhinovirus (600/1 246, 48.15%), Mycoplasma pneumoniae (217/1 246, 17.42%), and respiratory syncytial virus (182/1 246, 14.61%). The main manifestations of hMPV pneumonia were cough, expectoration, and fever. Children with severe pneumonia were significantly younger (P<0.05). Wheezing, underlying diseases, co-infection, and younger age were identified as independent risk factors for severe pneumonia (P<0.05).
CONCLUSIONS
There are significant annual and seasonal differences in the epidemiological characteristics of hMPV in hospitalized children. Young age, underlying diseases, wheezing, and co-infection are independent risk factors for severe pneumonia.
Humans
;
Risk Factors
;
Metapneumovirus
;
Child, Preschool
;
Child
;
Male
;
Female
;
Paramyxoviridae Infections/complications*
;
Pneumonia/epidemiology*
;
Retrospective Studies
;
Child, Hospitalized
;
Infant
;
Logistic Models
;
Seasons
;
Hospitalization
9.The systemic inflammatory response index as a risk factor for all-cause and cardiovascular mortality among individuals with coronary artery disease: evidence from the cohort study of NHANES 1999-2018.
Dao-Shen LIU ; Dan LIU ; Hai-Xu SONG ; Jing LI ; Miao-Han QIU ; Chao-Qun MA ; Xue-Fei MU ; Shang-Xun ZHOU ; Yi-Xuan DUAN ; Yu-Ying LI ; Yi LI ; Ya-Ling HAN
Journal of Geriatric Cardiology 2025;22(7):668-677
BACKGROUND:
The association of systemic inflammatory response index (SIRI) with prognosis of coronary artery disease (CAD) patients has never been investigated in a large sample with long-term follow-up. This study aimed to explore the association of SIRI with all-cause and cause-specific mortality in a nationally representative sample of CAD patients from United States.
METHODS:
A total of 3386 participants with CAD from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 were included in this study. Cox proportional hazards model, restricted cubic spline (RCS), and receiver operating characteristic curve (ROC) were performed to investigate the association of SIRI with all-cause and cause-specific mortality. Piece-wise linear regression and sensitivity analyses were also performed.
RESULTS:
During a median follow-up of 7.7 years, 1454 all-cause mortality occurred. After adjusting for confounding factors, higher lnSIRI was significantly associated with higher risk of all-cause (HR = 1.16, 95% CI: 1.09-1.23) and CVD mortality (HR = 1.17, 95% CI: 1.05-1.30) but not cancer mortality (HR = 1.17, 95% CI: 0.99-1.38). The associations of SIRI with all-cause and CVD mortality were detected as J-shaped with threshold values of 1.05935 and 1.122946 for SIRI, respectively. ROC curves showed that lnSIRI had robust predictive effect both in short and long terms.
CONCLUSIONS
SIRI was independently associated with all-cause and CVD mortality, and the dose-response relationship was J-shaped. SIRI might serve as a valid predictor for all-cause and CVD mortality both in the short and long terms.
10.Qishen Granules Modulate Metabolism Flexibility Against Myocardial Infarction via HIF-1 α-Dependent Mechanisms in Rats.
Xiao-Qian SUN ; Xuan LI ; Yan-Qin LI ; Xiang-Yu LU ; Xiang-Ning LIU ; Ling-Wen CUI ; Gang WANG ; Man ZHANG ; Chun LI ; Wei WANG
Chinese journal of integrative medicine 2025;31(3):215-227
OBJECTIVE:
To assess the cardioprotective effect and impact of Qishen Granules (QSG) on different ischemic areas of the myocardium in heart failure (HF) rats by evaluating its metabolic pattern, substrate utilization, and mechanistic modulation.
METHODS:
In vivo, echocardiography and histology were used to assess rat cardiac function; positron emission tomography was performed to assess the abundance of glucose metabolism in the ischemic border and remote areas of the heart; fatty acid metabolism and ATP production levels were assessed by hematologic and biochemical analyses. The above experiments evaluated the cardioprotective effect of QSG on left anterior descending ligation-induced HF in rats and the mode of energy metabolism modulation. In vitro, a hypoxia-induced H9C2 model was established, mitochondrial damage was evaluated by flow cytometry, and nuclear translocation of hypoxia-inducible factor-1 α (HIF-1 α) was observed by immunofluorescence to assess the mechanism of energy metabolism regulation by QSG in hypoxic and normoxia conditions.
RESULTS:
QSG regulated the pattern of glucose and fatty acid metabolism in the border and remote areas of the heart via the HIF-1 α pathway, and improved cardiac function in HF rats. Specifically, QSG promoted HIF-1 α expression and entry into the nucleus at high levels of hypoxia (P<0.05), thereby promoting increased compensatory glucose metabolism; while reducing nuclear accumulation of HIF-1 α at relatively low levels of hypoxia (P<0.05), promoting the increased lipid metabolism.
CONCLUSIONS
QSG regulates the protein stability of HIF-1 α, thereby coordinating energy supply balance between the ischemic border and remote areas of the myocardium. This alleviates the energy metabolism disorder caused by ischemic injury.
Animals
;
Myocardial Infarction/physiopathology*
;
Male
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Rats, Sprague-Dawley
;
Glucose/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Energy Metabolism/drug effects*
;
Rats
;
Fatty Acids/metabolism*
;
Myocardium/pathology*


Result Analysis
Print
Save
E-mail