1.Overview of the Research on Mechanisms and Application of Essential Oil of Aromatic Chinese Medicinals in Prevention of Respiratory Infectious Disease
Wan Ling LI ; Xinxin WU ; Xiaolei LI ; Mingzhao HAO ; Fang ZHANG ; Yue ZHANG ; Haoyue LI ; Jing ZHAO
Journal of Traditional Chinese Medicine 2025;66(6):638-644
Aromatic Chinese medicinal essential oils are volatile oils extracted from aromatic Chinese herbs, which can prevent and treat respiratory infectious diseases through multiple synergistic mechanisms including pathogen inhibition, immune regulation, and inflammatory response regulation. Essential oils are primarily used externally on the body to prevent infections and alleviate symptoms through methods like inhalation, smearing, topical application, bathing, gargling or as a suppository. They can also be utilized in the environment for disinfection and air purification, through methods like diffusion, vaporization, or spraying. The external application of essential oils extracted from Chinese aromatic herbs has the advantages of convenience, quick absorption, and simultaneous influence on both the body and mind. However, there are still challenges and deficiencies in aspects such as the positioning of functions, indications, safety, and the research on the mechanism of action. It has been proposed to combine the theory of aromatic Chinese medicinals with the characteristics of essential oils, and formulate prescriptions of Chinese medicinal essential oils under the principles of traditional Chinese medicine syndrome differentiation, and prevent and treat respiratory infectious diseases efficiently, accurately, and safely, thereby expanding the clinical application of aromatic Chinese medicinals and the preventive theory of traditional Chinese medicine.
2.Exploration of Rat Fetal Lung Tissue Fixation Methods
Liyu LIU ; Bo JI ; Xiaoxuan LIU ; Yang FANG ; Ling ZHANG ; Tingting GUO ; Ye QUAN ; Hewen LI ; Yitian LIU
Laboratory Animal and Comparative Medicine 2025;45(4):432-438
ObjectiveThis study explores the methods of lung tissue extraction and fixation required for pathological studies of fetal rats, based on the unique physiological structure of fetal rat lung tissue and existing lung tissue fixation techniques for adult rats. MethodsSix pregnant adult SD rats at 20.5 days of gestation were subjected to cesarean section to obtain fetal rats. Four healthy fetal rats with similar body weight, vital signs, and respiratory status were selected from each pregnant rat, and they were randomly divided into the following groups using a random number table: direct lung infiltration group, lung infiltration group after intratracheal infusion, whole-body infiltration group of fetal rats, and whole-body infiltration group after intratracheal infusion of fetal rats. To systematically compare and analyze the anatomical morphology under different fixation methods, lung tissues from four groups of fetal rats were harvested, perfused, and fixed, and the gross morphology of lung tissues in each group was observed. Paraffin sections were prepared and stained with Hematoxylin-Eosin (H&E). The histological morphology of the whole lung, alveoli, and bronchi was further examined under optical microscopy. ResultsIn the direct lung infiltration group, the hilar structures were unclear, lung lobation was indistinct, the shape was irregular, lung cavities were small, and alveoli and bronchi were shrunken. In the lung infiltration group after intratracheal infusion, the hilar structures were clear, lobation was pronounced, the shape was regular, lung cavities were large, and alveoli and bronchi were full. Both the whole-body infiltration group and whole-body infiltration group after intratracheal infusion of fetal rats exhibited visible lungs, hearts, skins, and other organs. The lung tissues of both groups showed obvious lobulation, irregular shape, and damage at the margins of lung lobes. In the whole-body infiltration group, the thoracic cavities of the fetus were flattened, lung cavities were small, and alveoli and bronchi were shrunken. In the whole-body infiltration group after intratracheal infusion of fetal rats, the fetal thoracic cavities were full, lung cavities were large, and alveoli and bronchi were relatively full. ConclusionThe lung infiltration after intratracheal infusion method for fetal rat lung tissue fixation outperforms direct lung infiltration, whole-body infiltration of fetal rats, and whole-body infiltration after intratracheal infusion of fetal rats in terms of preservation of the lung tissue's original morphology, paraffin sectioning, staining, and pathological observation and analysis. The embedding, sectioning, and staining processes are also simple and save consumables. Therefore, intratracheal infusion followed by lung infiltration method is recommended for fixation in histopathological observation of fetal rat lung tissue.
3.Molecular Mechanisms of RNA Modification Interactions and Their Roles in Cancer Diagnosis and Treatment
Jia-Wen FANG ; Chao ZHE ; Ling-Ting XU ; Lin-Hai LI ; Bin XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2252-2266
RNA modifications constitute a crucial class of post-transcriptional chemical alterations that profoundly influence RNA stability and translational efficiency, thereby shaping cellular protein expression profiles. These diverse chemical marks are ubiquitously involved in key biological processes, including cell proliferation, differentiation, apoptosis, and metastatic potential, and they exert precise regulatory control over these functions. A major advance in the field is the recognition that RNA modifications do not act in isolation. Instead, they participate in complex, dynamic interactions—through synergistic enhancement, antagonism, competitive binding, and functional crosstalk—forming what is now termed the “RNA modification interactome” or “RNA modification interaction network.” The formation and functional operation of this interactome rely on a multilayered regulatory framework orchestrated by RNA-modifying enzymes—commonly referred to as “writers,” “erasers,” and “readers.” These enzymes exhibit hierarchical organization within signaling cascades, often functioning in upstream-downstream sequences and converging at critical regulatory nodes. Their integration is further mediated through shared regulatory elements or the assembly into multi-enzyme complexes. This intricate enzymatic network directly governs and shapes the interdependent relationships among various RNA modifications. This review systematically elucidates the molecular mechanisms underlying both direct and indirect interactions between RNA modifications. Building upon this foundation, we introduce novel quantitative assessment frameworks and predictive disease models designed to leverage these interaction patterns. Importantly, studies across multiple disease contexts have identified core downstream signaling axes driven by specific constellations of interacting RNA modifications. These findings not only deepen our understanding of how RNA modification crosstalk contributes to disease initiation and progression, but also highlight its translational potential. This potential is exemplified by the discovery of diagnostic biomarkers based on interaction signatures and the development of therapeutic strategies targeting pathogenic modification networks. Together, these insights provide a conceptual framework for understanding the dynamic and multidimensional regulatory roles of RNA modifications in cellular systems. In conclusion, the emerging concept of RNA modification crosstalk reveals the extraordinary complexity of post-transcriptional regulation and opens new research avenues. It offers critical insights into the central question of how RNA-modifying enzymes achieve substrate specificity—determining which nucleotides within specific RNA transcripts are selectively modified during defined developmental or pathological stages. Decoding these specificity determinants, shaped in large part by the modification interactome, is essential for fully understanding the biological and pathological significance of the epitranscriptome.
4.Effect of moxibustion on small intestinal mucosal immune barrier in rats with diarrhea-predominant irritable bowel syndrome.
Kuiwu LI ; Haoran CHU ; Ling ZOU ; Jingru RUAN ; Lumin LIAO ; Xiaoyu HAN ; Wenli MA ; Ming FANG ; Jingwei ZHU ; Yucheng FANG ; Ziye WANG ; Tingting TONG
Chinese Acupuncture & Moxibustion 2025;45(7):935-944
OBJECTIVE:
To observe the effect of moxibustion on small intestinal mucosal immune barrier in rats with diarrhea-predominant irritable bowel syndrome (IBS-D) and explore its underlying mechanisms.
METHODS:
Of 38 newborn rats from 4 healthy SPF pregnant rats, 12 neonatal rats were randomly selected in a normal group. IBS-D model was prepared by the combined measures for the rest rats, including neonatal maternal separation, acetic acid enema and chronic restraint stress. Twenty-four successfully-modeled rats were randomized into a model group and a moxibustion group, 12 rats in each one. In the moxibustion group, suspending moxibustion was delivered at bilateral "Tianshu" (ST25) and "Shangjuxu" (ST37), 20 min each time, once daily and for 7 consecutive days. Separately, before acetic acid enema (aged 35 days), after modeling (aged 45 days) and after intervention (aged 53 days), the body mass, loose stool rate (LSR) and and the minimum volume threshold when abdominal withdrawal reflex (AWR) scored 3 were observed in the rats of each group. After intervention (aged 53 days), using HE and PAS staining, the morphology of duodenum was observed, the length of villus and the depth of crypt were measured, the ratio of the length of villus to the depth of crypt was calculated; and the numbers of mucosal intraepithelial lymphocytes (IELs) and goblet cells were counted. With ELISA adopted, the contents of γ-interferon (IFN-γ), interleukin-4 (IL-4) and secretory immunoglobulin A (sIgA) in duodenal mucosa of rats were detected. The proportion of T cell subsets in duodenal mucosa was detected using flow cytometry. The microvilli and tight junctions of duodenal mucosal epithelial cells were observed by transmission electron microscopy, and the integrity of duodenal mucosa observed by scanning electron microscopy.
RESULTS:
Compared with the normal group, for the rats in the model group, the body mass, the minimum volume threshold when AWR scored 3, the length of duodenal villus and the the ratio of the length of villus to the depth of crypt, as well as the proportion of CD8+ T subset were all reduced (P<0.01, P<0.05), the counts of goblet cells in duodenal mucosa decreased (P<0.01); LRS, the proportion of CD4+ T subset and CD4+/CD8+, as well as the contents of IFN-γ, IL-4 and sIgA in duodenal mucosa and IFN-γ/IL-4 were all elevated (P<0.01); and the numbers of IELs rose (P<0.01). The morphology of duodenal mucosa was irregular, the villi got shorter, sparse and scattered, with uneven density. The morphology of epithelial cells was destroyed and the tight junctions damaged, with larger spaces. When compared with the model group, in the moxibustion group, the body mass, the minimum volume threshold when AWR scored 3, the length of duodenal villus and the ratio of the length of villus to the depth of crypt, as well as the counts of goblet cells in duodenal mucosa increased (P<0.01); LRS, the proportion of CD4+ T subset, and CD4+/CD8+, as well as the contents of IFN-γ, IL-4 and sIgA in duodenal mucosa and IFN-γ/IL-4 were reduced (P<0.01); and the numbers of IELs was dropped (P<0.01). The morphology of duodenal mucosa was more regular, the villi were grew, got longer and arranged regularly, with even density. The morphology of epithelial cells was slightly destroyed, and the tight junctions partially damaged.
CONCLUSION
Moxibustion at "Tianshu" (ST25) and "Shangjuxu" (ST37) can reduce visceral hypersensitivity in IBS-D rats and relieve abdominal pain, diarrhea and other symptoms. Its effect mechanism may be related to the repair of small intestinal mucosal immune barrier and the improvement in the immune function in IBS-D.
Animals
;
Irritable Bowel Syndrome/immunology*
;
Rats
;
Moxibustion
;
Intestinal Mucosa/immunology*
;
Female
;
Diarrhea/therapy*
;
Intestine, Small/immunology*
;
Male
;
Humans
;
Rats, Sprague-Dawley
;
Disease Models, Animal
5.Spicy food consumption and risk of vascular disease: Evidence from a large-scale Chinese prospective cohort of 0.5 million people.
Dongfang YOU ; Dianjianyi SUN ; Ziyu ZHAO ; Mingyu SONG ; Lulu PAN ; Yaqian WU ; Yingdan TANG ; Mengyi LU ; Fang SHAO ; Sipeng SHEN ; Jianling BAI ; Honggang YI ; Ruyang ZHANG ; Yongyue WEI ; Hongxia MA ; Hongyang XU ; Canqing YU ; Jun LV ; Pei PEI ; Ling YANG ; Yiping CHEN ; Zhengming CHEN ; Hongbing SHEN ; Feng CHEN ; Yang ZHAO ; Liming LI
Chinese Medical Journal 2025;138(14):1696-1704
BACKGROUND:
Spicy food consumption has been reported to be inversely associated with mortality from multiple diseases. However, the effect of spicy food intake on the incidence of vascular diseases in the Chinese population remains unclear. This study was conducted to explore this association.
METHODS:
This study was performed using the large-scale China Kadoorie Biobank (CKB) prospective cohort of 486,335 participants. The primary outcomes were vascular disease, ischemic heart disease (IHD), major coronary events (MCEs), cerebrovascular disease, stroke, and non-stroke cerebrovascular disease. A Cox proportional hazards regression model was used to assess the association between spicy food consumption and incident vascular diseases. Subgroup analysis was also performed to evaluate the heterogeneity of the association between spicy food consumption and the risk of vascular disease stratified by several basic characteristics. In addition, the joint effects of spicy food consumption and the healthy lifestyle score on the risk of vascular disease were also evaluated, and sensitivity analyses were performed to assess the reliability of the association results.
RESULTS:
During a median follow-up time of 12.1 years, a total of 136,125 patients with vascular disease, 46,689 patients with IHD, 10,097 patients with MCEs, 80,114 patients with cerebrovascular disease, 56,726 patients with stroke, and 40,098 patients with non-stroke cerebrovascular disease were identified. Participants who consumed spicy food 1-2 days/week (hazard ratio [HR] = 0.95, 95% confidence interval [95% CI] = [0.93, 0.97], P <0.001), 3-5 days/week (HR = 0.96, 95% CI = [0.94, 0.99], P = 0.003), and 6-7 days/week (HR = 0.97, 95% CI = [0.95, 0.99], P = 0.002) had a significantly lower risk of vascular disease than those who consumed spicy food less than once a week ( Ptrend <0.001), especially in those who were younger and living in rural areas. Notably, the disease-based subgroup analysis indicated that the inverse associations remained in IHD ( Ptrend = 0.011) and MCEs ( Ptrend = 0.002) risk. Intriguingly, there was an interaction effect between spicy food consumption and the healthy lifestyle score on the risk of IHD ( Pinteraction = 0.037).
CONCLUSIONS
Our findings support an inverse association between spicy food consumption and vascular disease in the Chinese population, which may provide additional dietary guidance for the prevention of vascular diseases.
Humans
;
Male
;
Female
;
Prospective Studies
;
Middle Aged
;
Aged
;
Vascular Diseases/etiology*
;
Risk Factors
;
China/epidemiology*
;
Adult
;
Proportional Hazards Models
;
Cerebrovascular Disorders/epidemiology*
;
East Asian People
6.Protective mechanism of Chaihu Shugan San against CORT-induced damage in PC12 cells based on mitochondrial dynamics.
Ling-Yuan ZHANG ; Qi-Qi ZHENG ; Jia-Li SHI ; Pei-Fang WANG ; Jia-Li LU ; Jian-Ying SHEN
China Journal of Chinese Materia Medica 2025;50(16):4546-4554
In this report, the protective effect and molecular mechanism of Chaihu Shugan San-containing serum on corticosterone(CORT)-induced mitochondrial damage in pheochromocytoma(PC12) cells was studied based on CORT-induced rat PC12 cell model. The cultured cells were divided into five groups: blank control group, CORT group(400 μmol·L~(-1) CORT), Chaihu Shugan San-containing serum group(400 μmol·L~(-1) CORT + 10% Chaihu Shugan San-containing serum), control serum group(400 μmol·L~(-1) CORT + 10% control serum), and fluoxetine group(400 μmol·L~(-1) CORT + 10% fluoxetine-containing serum). The study was carried out by cell activity detection, mitochondrial morphology observation, membrane potential measurement, energy metabolism analysis, and mitochondrial dynamics-related protein detection. The results showed that CORT treatment significantly reduced the survival rate of PC12 cells, altered mitochondrial morphology, and decreased mitochondrial membrane potential and adenosine triphosphate(ATP) synthetic rate. Both Chaihu Shugan San-and fluoxetine-containing serum significantly increased the survival rate of CORT-treated PC12 cells and the ATP synthetic rate in the mitochondria. Unlike fluoxetine, Chaihu Shugan San-containing serum significantly inhibited the decrease in mitochondrial membrane potential caused by CORT and increased the oxygen consumption rate(OCR) values of both mitochondrial maximum respiration and reserve respiration capacity. Western blot analysis showed that CORT induced upregulated protein expressions of dynamin-related protein 1(Drp1) and peroxisome proliferator-activated receptor gamma co-activator 1α(PGC-1α) in PC12 cells and specific protein expression of optic atrophy protein 1(OPA1), yet it repressed the protein expressions of silent information regulator 1(SIRT1) and mitochondrial fusion protein 1(Mfn1) in PC12 cells. Both Chaihu Shugan San-and fluoxetine-containing serum significantly inhibited the protein expression of Drp1. However, only Chaihu Shugan San-containing serum could significantly inhibit the CORT-induced upregulation protein of PGC-1α. RESULTS:: herein suggest that Chaihu Shugan San-containing serum can alleviate CORT-induced damage in PC12 cells, which may be related to the mitochondrial fragmentation/lipid peroxidation protection by Drp1 inhibition, as well as mitochondrial dynamics and energy metabolism mediated by PGC-1α/SIRT1 signaling pathway.
Animals
;
PC12 Cells
;
Rats
;
Mitochondrial Dynamics/drug effects*
;
Mitochondria/metabolism*
;
Corticosterone/adverse effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Protective Agents/pharmacology*
;
Cell Survival/drug effects*
7.Body fat distribution and semen quality in 4304 Chinese sperm donors.
Si-Han LIANG ; Qi-Ling WANG ; Dan LI ; Gui-Fang YE ; Ying-Xin LI ; Wei ZHOU ; Rui-Jun XU ; Xin-Yi DENG ; Lu LUO ; Si-Rong WANG ; Xin-Zong ZHANG ; Yue-Wei LIU
Asian Journal of Andrology 2025;27(4):524-530
Extensive studies have identified potential adverse effects on semen quality of obesity, based on body mass index, but the association between body fat distribution, a more relevant indicator for obesity, and semen quality remains less clear. We conducted a longitudinal study of 4304 sperm donors from the Guangdong Provincial Human Sperm Bank (Guangzhou, China) during 2017-2021. A body composition analyzer was used to measure total and local body fat percentage for each participant. Generalized estimating equations were employed to assess the association between body fat percentage and sperm count, motility, and morphology. We estimated that each 10% increase in total body fat percentage (estimated change [95% confidence interval, 95% CI]) was significantly associated with a 0.18 × 10 6 (0.09 × 10 6 -0.27 × 10 6 ) ml and 12.21 × 10 6 (4.52 × 10 6 -19.91 × 10 6 ) reduction in semen volume and total sperm count, respectively. Categorical analyses and exposure-response curves showed that the association of body fat distribution with semen volume and total sperm count was stronger at higher body fat percentages. In addition, the association still held among normal weight and overweight participants. We observed similar associations for upper limb, trunk, and lower limb body fact distributions. In conclusion, we found that a higher body fat distribution was significantly associated with lower semen quality (especially semen volume) even in men with a normal weight. These findings provide useful clues in exploring body fat as a risk factor for semen quality decline and add to evidence for improving semen quality for those who are expected to conceive.
Humans
;
Male
;
Adult
;
Semen Analysis
;
China
;
Body Fat Distribution
;
Longitudinal Studies
;
Sperm Count
;
Sperm Motility
;
Body Mass Index
;
Tissue Donors
;
Obesity/complications*
;
Spermatozoa
;
Young Adult
;
Middle Aged
;
East Asian People
8.Molecular targeted therapy for progressive low-grade gliomas in children.
Yan-Ling SUN ; Miao LI ; Jing-Jing LIU ; Wen-Chao GAO ; Yue-Fang WU ; Lu-Lu WAN ; Si-Qi REN ; Shu-Xu DU ; Wan-Shui WU ; Li-Ming SUN
Chinese Journal of Contemporary Pediatrics 2025;27(6):682-689
OBJECTIVES:
To evaluate the efficacy of molecular targeted agents in children with progressive pediatric low-grade gliomas (pLGG).
METHODS:
A retrospective analysis was conducted on pLGG patients treated with oral targeted therapies at the Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, from July 2021. Treatment responses and safety profiles were assessed.
RESULTS:
Among the 20 enrolled patients, the trametinib group (n=12, including 11 cases with BRAF fusions and 1 case with BRAF V600E mutation) demonstrated 4 partial responses (33%) and 2 minor responses (17%), with a median time to response of 3.0 months. In the vemurafenib group (n=6, all with BRAF V600E mutation), 5 patients achieved partial responses (83%), showing a median time to response of 1.0 month. Comparative analysis revealed no statistically significant difference in progression-free survival rates between the two treatment groups (P>0.05). The median duration of clinical benefit (defined as partial response + minor response + stable disease) was 11.0 months for vemurafenib and 18.0 months for trametinib. Two additional cases, one with ATM mutation treated with olaparib for 24 months and one with NF1 mutation receiving everolimus for 21 months, discontinued treatment due to sustained disease stability. No severe adverse events were observed in any treatment group.
CONCLUSIONS
Molecular targeted therapy demonstrates clinical efficacy with favorable tolerability in pLGG. Vemurafenib achieves high response rates and induces early tumor shrinkage in patients with BRAF V600E mutations, supporting its utility as a first-line therapy.
Humans
;
Glioma/genetics*
;
Male
;
Female
;
Child
;
Child, Preschool
;
Retrospective Studies
;
Brain Neoplasms/genetics*
;
Molecular Targeted Therapy/adverse effects*
;
Adolescent
;
Infant
;
Proto-Oncogene Proteins B-raf/genetics*
;
Pyrimidinones/therapeutic use*
;
Mutation
9.Ginsenoside-Rg5 Synergizes with Imatinib to Enhances the Anti-Chronic Myeloid Leukemia K562 Cell Activity through PI3K/AKT/mTOR Pathway.
Di JIN ; Chang-Qing GUI ; Qian-Qian YE ; Guo-Fang DENG ; Chang-Ling ZHU ; Li XU
Journal of Experimental Hematology 2025;33(1):1-8
OBJECTIVE:
To investigate the synergistic effect and its mechanism of ginsenoside-Rg5 in combination with imatinib in inhibiting proliferation of chronic myeloid leukemia K562 cells.
METHODS:
K562 cells were treated with ginsenoside-Rg5 and imatinib. Cell survival was detected by CCK-8 assay, and IC50 were calculated separately for each drug. Based on the value of IC50 of ginsenoside-Rg5 and imatinib, an appropriate concentration gradient was selected for the combination. The synergistic effect of the two drug was analyzed using the online software synergy finder. The effects of single or combination therapy on apoptosis rate and the cell cycle distribution of K562 cells were analyzed by flow cytometry. Western blot was used to detect the expression of PI3K/AKT/mTOR signaling pathway related proteins and apoptosis related proteins in K562 cells after single or combination therapy.
RESULTS:
Ginsenoside-Rg5 and imatinib were able to inhibit the proliferative activity of K562 cells in a dosedependent manner(r =-0.991, r =-0.942). The synergy score ZIP >10 was measured by Synergy Finder online software, indicating that ginsenoside-Rg5 and imatinib act synergistically on K562 cells. The apoptotic rates of K562 cells after single treatments with ginsenoside-Rg5 and imatinib were 11.96% and 8.13%, respectively, while the rate increased to 21.35% with the combination of two drugs, the apoptosis rate in the combination group was higher than that in the single-drug group ( P <0.05). The proportion of K562 cells in the G0/G1 phase was significantly increased with the combined treatment of two drugs( P <0.05). The protein expression levels of p-PI3K, p-AKT, p-mTOR in K562 cells treated with the combination were significantly decreased, with noticeable downregulation of BCL-2 and upregulation of BAX, leading to a decreased Bcl-2/BAX ratio, while no significant changes were observed in the non-phosphorylated forms of PI3K, AKT, and mTOR proteins.
CONCLUSION
The combination of ginsenoside-Rg5 and imatinib can inhibit the proliferation of CML cells and induce apoptosis, and the mechanism may act through PI3K/AKT/mTOR signaling pathways.
Humans
;
Ginsenosides/pharmacology*
;
Imatinib Mesylate
;
K562 Cells
;
TOR Serine-Threonine Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Signal Transduction/drug effects*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism*
;
Drug Synergism
;
Apoptosis/drug effects*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Cell Proliferation/drug effects*
10.Establishment of a Bortezomib-Resistant Multiple Myeloma Xenotransplantation Mouse Model by Transplanting Primary Cells from Patients.
Yan-Hua YUE ; Yi-Fang ZHOU ; Ying-Jie MIAO ; Yang CAO ; Fei WANG ; Yue LIU ; Feng LI ; Yang-Ling SHEN ; Yan-Ting GUO ; Yu-Hui HUANG ; Wei-Ying GU
Journal of Experimental Hematology 2025;33(1):133-141
OBJECTIVE:
To explore the construction method of a resistant multiple myeloma (MM) patient-derived xenotransplantation (PDX) model.
METHODS:
1.0×107 MM patient-derived mononuclear cells (MNCs), 2.0×106 MM.1S cells and 2.0×106 NCI-H929 cells were respectively subcutaneously inoculated into NOD.CB17-Prkdcscid Il2rgtm1/Bcgen (B-NDG) mice with a volume of 100 μl per mouse to establish mouse model. The morphologic, phenotypic, proliferative and genetic characteristics of PDX tumor were studied by hematoxylin-eosin staining, immunohistochemical staining (IHC), cell cycle analysis, flow cytometry and fluorescence in situ hybridization (FISH). The sensitivity of PDX tumor to bortezomib and anlotinib monotherapy or in combination was investigated through cell proliferation, apoptosis and in vitro and in vivo experiments. The effects of anlotinib therapy on tumor blood vessel and cell apoptosis were analyzed by IHC, TUNEL staining and confocal fluorescence microscope.
RESULTS:
MM PDX model was successfully established by subcutaneously inoculating primary MNCs. The morphologic features of tumor cells from MM PDX model were similar to those of mature plasma cells. MM PDX tumor cells positively expressed CD138 and CD38, which presented 1q21 amplification, deletion of Rb1 and IgH rearrangement, and had a lower proliferative activity than MM cell lines. in vitro, PDX, MM.1S and NCI-H929 cells were treated by bortezomib and anlotinib for 24 hours, respectively. Cell viability assay showed that the IC50 value of bortezomib were 5 716.486, 1.025 and 2.775 nmol/L, and IC50 value of anlotinib were 5 5107.337, 0.706 and 5.13 μmol/L, respectively. Anlotinib treatment increased the apoptosis of MM.1S cells (P < 0.01), but did not affect PDX tumor cells (P >0.05). in vivo, there was no significant difference in PDX tumor growth between bortezomib monotherapy group and control group (P >0.05), while both anlotinib monotherapy and anlotinib combined with bortezomib effectively inhibited PDX tumor growth (both P < 0.05). The vascular perfusion and vascular density of PDX tumor were decreased in anlotinib treatment group (both P < 0.01). The apoptotic cells in anlotinib treatment group were increased compared with those in control group (P < 0.05).
CONCLUSION
Bortezomib-resistant MM PDX model can be successfully established by subcutaneous inoculation of MNCs from MM patients in B-NDG mice. This PDX model, which retains the basic biological characteristics of MM cells, can be used to study the novel therapies.
Animals
;
Bortezomib
;
Humans
;
Multiple Myeloma/pathology*
;
Mice
;
Apoptosis
;
Drug Resistance, Neoplasm
;
Cell Line, Tumor
;
Xenograft Model Antitumor Assays
;
Mice, Inbred NOD
;
Disease Models, Animal
;
Cell Proliferation
;
Transplantation, Heterologous

Result Analysis
Print
Save
E-mail