1.Effect of Qingxin Jieyu Granules on Artery Thrombosis and Akt/NF-κB Signaling Pathway in EA.hy926 Cells Exposed to TNF-α
Chenchen HE ; Chenyi WEI ; Zhenghao LYU ; Qiaoyan CAI ; Zhuye GAO ; Ling ZHANG ; Jianfeng CHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):89-97
ObjectiveTo observe the effects of Qingxin Jieyu granules (QXJYG) on FeCl3-induced carotid artery thrombosis in rats and on the expression of thrombosis-related proteins tissue factor (TF) and tissue factor pathway inhibitor (TFPI) as well as the protein kinase B (Akt)/nuclear factor-κB (NF-κB) signaling pathway in EA.hy926 cells exposed to tumor necrosis factor-α (TNF-α), thus preliminarily exploring the mechanism of QXJYG in inhibiting thrombosis. MethodsThirty-six SD rats were randomized into normal control, model, positive control (aspirin, 9 mg·kg-1), and low-, medium-, and high-dose (0.99, 1.98, 3.96 g·kg-1, respectively) QXJYG groups (n=6). The rats in the drug treatment groups were administrated with corresponding drugs, and those in the normal control group and model group were given an equal volume of distilled water. After 14 consecutive days of prophylactic gavage, the rat model of common carotid artery thrombosis was established with 45% FeCl3 solution, and the blood vessels were collected and the wet weight of thrombus was weighed by an electronic balance (precision of 1/10 000). The thrombosis in the common carotid artery of each group of rats was observed by hematoxylin-eosin staining. The plasma levels of von Willebrand factor (vWF), platelet endothelial cell adhesion molecule-1 (PECAM-1), tissue-type plasminogen activator (t-PA), and plasminogen activator inhibitor-1 (PAI-1) were determined by enzyme-linked immunosorbent assay. An endothelial cell injury model was established by treating EA.hy926 human umbilical vein endothelial cells with TNF-α. The cell counting kit-8 method was used to screen the intervention concentrations of QXJYG. Western blot was employed to determine the protein levels of TF, TFPI, Akt, p-Akt, NF-κB p65, and p-NF-κB p65 in each group of cells. ResultsThe animal experiment showed that compared with the normal control group, the model group showed an increase in carotid artery thrombus weight (P<0.05), with unclear vascular structure and extensive thrombosis in the lumen. In addition, the plasma levels of vWF, PECAM-1, and PAI-1 were elevated, while the t-PA level became lowered (P<0.05) in the model group. Compared with the model group, the aspirin and QXJYG groups showed reductions in the weight of FeCl3-induced carotid artery thrombi (P<0.05) and thrombosis in the lumen, declines in plasma levels of PECAM-1 and PAI-1, and an elevation in the t-PA level (P<0.05). Moreover, the QXJYG groups showed reductions in the plasma level of vWF (P<0.05), which, however, had no significant difference between the aspirin group and the model group. The cell experiments indicated that 31.25, 62.5, 125, 250, 500 mg·L-1 QXJYG had no effect on the viability of EA.hy926 cells. Therefore, 250, 500 mg·L-1 QXJYG were selected as the intervention concentrations for subsequent experiments. Western blotting results showed that compared with the control group, the TNF-α stimulation downregulated the expression of TFPI (P<0.05), upregulated the expression of TF, and increased the ratios of p-Akt/Akt and p-NF-κB p65/NF-κB p65 (P<0.05) in EA.hy926 cells. Compared with the model group, the intervention with QXJYG upregulated the expression of TFPI (P<0.05), inhibited the expression of TF, and decreased the ratios of p-Akt/Akt and p-NF-κB p65/NF-κB p65 (P<0.05). ConclusionQXJYG has the effect of inhibiting thrombosis and regulating the expression of TF and TFPI in endothelial cells exposed to TNF-α by suppressing the abnormal activation of the Akt/NF-κB signaling pathway.
2.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
3.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
4.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
5.Effects of Tongdu Tiaoshen acupuncture on depression-like behavior and Endophilin A1/ROS pathway in hippocampal tissue of CUMS model rats.
Ling ZOU ; Xiaoge SONG ; Yanbiao ZHAO ; Tingting QIAN ; Yifan CHU ; Wen PAN ; Haoran CHU ; Shaojie YANG ; Meixiang SUN ; Peiyang SUN
Chinese Acupuncture & Moxibustion 2025;45(9):1281-1289
OBJECTIVE:
To observe the effects of Tongdu Tiaoshen acupuncture (for unblocking the obstruction in the governor vessel and regulating the spirit) on depression-like behavior and the hippocampal Endophilin A1/reactive oxygen species (ROS) pathway in the chronic unpredictable mild stress (CUMS) model rats, and explore the mechanism of this therapy for depression.
METHODS:
Forty-eight male SD rats of SPF grade were randomly divided into a normal group (n=12) and a modeling group (n=36). In the modeling group, CUMS was performed to establish depression model. The successfully-modeled rats were randomized into a model group, a Tongdu Tiaoshen acupuncture group (referred to as the acupuncture group), and a fluoxetine group, with 12 rats in each group. In the acupuncture group, "Baihui" (GV20), "Shenting" (GV24), "Shuigou" (GV26) and "Dazhui" (GV14) were stimulated with acupuncture. This intervention measure was delivered once a day, continuously for 6 days; it was discontinued on day 7 and was completed in 28 days. In the fluoxetine group, intragastric administration was done with fluoxetine solution (2.1 mg/kg), once a day, and for 28 consecutive days. Before and after modeling, and after intervention completion, the body mass, sucrose preference rate and the total distance of movement and the boxes of horizontal crossing in the open field experiment were observed in each group. After intervention, using HE staining, the hippocampal neuron morphology was observed; using Nissl staining, the hippocampal Nissl body number was counted. The hippocampal mitochondria was observed under transmission electron microscopy. The average fluorescence intensity of ROS in hippocampal was determined using flow cytometry. With Western blot method, the protein expression of Endophilin A1, growth associated protein 43 (GAP-43), and brain-derived neurotrophic factor (BDNF) in hippocampal was detected; and with RT-qPCR method, the mRNA expression of Endophilin A1, GAP-43, and BDNF was recorded. Using the immunofluorescence, the average fluorescence intensity of Endophilin A1, GAP-43, and BDNF in hippocampal tissue was determined.
RESULTS:
Compared with the normal group, in the model group, the body mass, sucrose preference rate, and the total distance of movement and the boxes of horizontal crossing in the open field experiment decreased (P<0.01); the hippocampal neuronal structure was unclear, the matrix was relatively loose, and the number of Nissl body decreased (P<0.01); mitochondrial structure was disarranged, the outer membrane was ruptured, mitochondrial cristae was irregular or missed; the average fluorescence intensity of ROS in hippocampal tissue, the protein and mRNA expression and the average fluorescence intensity of Endophilin A1 in hippocampal tissue increased (P<0.01), while the protein and mRNA expression of GAP-43 and BDNF and its average fluorescence intensity decreased (P<0.01). Compared with the model group, the acupuncture group and the fluoxetine group showed the increase in body mass, sucrose preference rate, the total distance of movement and the boxes of horizontal crossing in the open field experiment (P<0.05, P<0.01); the hippocampal neuronal structure became relatively clear, the matrix was relatively dense, and the number of Nissl body was elevated (P<0.01); mitochondrial structure got normal and disarranged slightly, the average fluorescence intensity of ROS in hippocampal tissue, the protein and mRNA expression and the average fluorescence intensity of Endophilin A1 in hippocampal tissue were reduced (P<0.01), while the protein and mRNA expression of GAP-43 and BDNF and the average fluorescence intensity rose (P<0.01, P<0.05). Compared with the fluoxetine group, the acupuncture group presented the increase in the average fluorescence intensity of ROS, the protein expression and the average fluorescence intensity of Endophilin A1, the protein expression of GAP-43 and the mRNA expression of BDNF (P<0.01, P<0.05), and the decrease of the protein expression and the average fluorescence intensity of BDNF, the mRNA expression of Endophilin A1, and the average fluorescence intensity of GAP-43 (P<0.01, P<0.05).
CONCLUSION
Tongdu tiaoshen acupuncture alleviates depression-like behaviors in CUMS model rats and protects hippocampal neurons, which may be related to suppressing Endophilin A1/ROS signaling pathway and attenuating oxidative stress reactions.
Animals
;
Male
;
Hippocampus/metabolism*
;
Acupuncture Therapy
;
Rats, Sprague-Dawley
;
Rats
;
Depression/psychology*
;
Humans
;
Reactive Oxygen Species/metabolism*
;
Disease Models, Animal
;
Acupuncture Points
6.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
7.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
8.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
9.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
10.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.

Result Analysis
Print
Save
E-mail