1.Five-year outcomes of metabolic surgery in Chinese subjects with type 2 diabetes.
Yuqian BAO ; Hui LIANG ; Pin ZHANG ; Cunchuan WANG ; Tao JIANG ; Nengwei ZHANG ; Jiangfan ZHU ; Haoyong YU ; Junfeng HAN ; Yinfang TU ; Shibo LIN ; Hongwei ZHANG ; Wah YANG ; Jingge YANG ; Shu CHEN ; Qing FAN ; Yingzhang MA ; Chiye MA ; Jason R WAGGONER ; Allison L TOKARSKI ; Linda LIN ; Natalie C EDWARDS ; Tengfei YANG ; Rongrong ZHANG ; Weiping JIA
Chinese Medical Journal 2025;138(4):493-495
2.A synthetic peptide, derived from neurotoxin GsMTx4, acts as a non-opioid analgesic to alleviate mechanical and neuropathic pain through the TRPV4 channel.
ShaoXi KE ; Ping DONG ; Yi MEI ; JiaQi WANG ; Mingxi TANG ; Wanxin SU ; JingJing WANG ; Chen CHEN ; Xiaohui WANG ; JunWei JI ; XinRan ZHUANG ; ShuangShuang YANG ; Yun ZHANG ; Linda M BOLAND ; Meng CUI ; Masahiro SOKABE ; Zhe ZHANG ; QiongYao TANG
Acta Pharmaceutica Sinica B 2025;15(3):1447-1462
Mechanical pain is one of the most common causes of clinical pain, but there remains a lack of effective treatment for debilitating mechanical and chronic forms of neuropathic pain. Recently, neurotoxin GsMTx4, a selective mechanosensitive (MS) channel inhibitor, has been found to be effective, while the underlying mechanism remains elusive. Here, with multiple rodent pain models, we demonstrated that a GsMTx4-based 17-residue peptide, which we call P10581, was able to reduce mechanical hyperalgesia and neuropathic pain. The analgesic effects of P10581 can be as strong as morphine but is not toxic in animal models. The anti-hyperalgesic effect of the peptide was resistant to naloxone (an μ-opioid receptor antagonist) and showed no side effects of morphine, including tolerance, motor impairment, and conditioned place preference. Pharmacological inhibition of TRPV4 by P10581 in a heterogeneous expression system, combined with the use of Trpv4 knockout mice indicates that TRPV4 channels may act as the potential target for the analgesic effect of P10581. Our study identified a potential drug for curing mechanical pain and exposed its mechanism.
3.Fto-dependent Vdac3 m6A Modification Regulates Neuronal Ferroptosis Induced by the Post-ICH Mass Effect and Transferrin.
Zhongmou XU ; Haiying LI ; Xiang LI ; Jinxin LU ; Chang CAO ; Lu PENG ; Lianxin LI ; John ZHANG ; Gang CHEN
Neuroscience Bulletin 2025;41(6):970-986
During the hyperacute phase of intracerebral hemorrhage (ICH), the mass effect and blood components mechanically lead to brain damage and neurotoxicity. Our findings revealed that the mass effect and transferrin precipitate neuronal oxidative stress and iron uptake, culminating in ferroptosis in neurons. M6A (N6-methyladenosine) modification, the most prevalent mRNA modification, plays a critical role in various cell death pathways. The Fto (fat mass and obesity-associated protein) demethylase has been implicated in numerous signaling pathways of neurological diseases by modulating m6A mRNA levels. Regulation of Fto protein levels in neurons effectively mitigated mass effect-induced neuronal ferroptosis. Applying nanopore direct RNA sequencing, we identified voltage-dependent anion channel 3 (Vdac3) as a potential target associated with ferroptosis. Fto influenced neuronal ferroptosis by regulating the m6A methylation of Vdac3 mRNA. These findings elucidate the intricate interplay between Fto, Vdac3, m6A methylation, and ferroptosis in neurons during the hyperacute phase post-ICH and suggest novel therapeutic strategies for ICH.
Ferroptosis/physiology*
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Animals
;
Neurons/metabolism*
;
Transferrin/pharmacology*
;
Mice
;
Methylation
;
Mice, Inbred C57BL
;
Adenosine/metabolism*
;
RNA, Messenger/metabolism*
;
Male
;
Oxidative Stress/physiology*
4.Analysis of the global disease burden and trend of early-onset colorectal cancer
Zhanghan CHEN ; Siqi GAN ; Yiyuan CAO ; Linda LI ; Tianyu ZHANG ; Jia SONG ; Zhipeng QI ; Yunshi ZHONG
Chinese Journal of Clinical Medicine 2025;32(5):734-742
Objective To analyze the disease burden of early-onset colorectal cancer (EOCRC) at the global, regional, and national levels from 1990 to 2021, and to predict the disease burden trend from 2022 to 2026. Methods Based on the Global Burden of Disease (GBD) database, the incidence, mortality, and disability-adjusted life year (DALY) rate of EOCRC across 204 countries and regions from 1990 to 2021 were obtained. The time trends of these indicators were assessed by calculating the estimated annual percentage change (EAPC), and the contributions of ten risk factors to the EOCRC burden were analyzed. The autoregressive integrated moving average (ARIMA) model was used to predict the disease burden from 2022 to 2026. Results From 1990 to 2021, the number of new global EOCRC cases increased from 107 310 to 211 890, with the incidence rising from 3.96 to 5.37 per 100 000 people. In 2021, global EOCRC incidence, mortality, and DALY rate increased with age; males had higher rates than females in terms of incidence, mortality, and DALY rate in all age groups. In 2021, East Asia had the highest number of new cases, deaths, and DALY. From 1990 to 2021, the global EAPC for incidence rate was 0.96%, and death rate was –0.38%. ARIMA model indicated that from 2022 to 2026, the global incidence of EOCRC would continue to rise, while mortality and DALY rate would be expected to decline. Conclusions The disease burden of EOCRC has significantly increased globally from 1990 to 2021, with notable regional, age, and sex differences. By 2026, the mortality and DALY rate of EOCRC will decline, while the incidence is expected to further increase, highlighting the urgency of taking active measures to address the growing trend of EOCRC.
5.Efferocytosis: A new therapeutic target for stroke.
Li GAO ; Anatol MANAENKO ; Feng ZENG ; Jingchen LI ; Lele LIU ; Ruichuan XIE ; Xiaohua ZHANG ; John H ZHANG ; Qiyong MEI ; Jiping TANG ; Qin HU
Chinese Medical Journal 2024;137(23):2843-2850
Efferocytosis refers to the process that phagocytes recognize and remove the apoptotic cells, which is essential for maintaining tissue homeostasis both in physiological and pathological conditions. Numerous studies have demonstrated that efferocytosis can prevent secondary necrosis and proinflammatory factor release, leading to the resolution of inflammation and tissue immunological tolerance in numerous diseases such as stroke. Stroke is a leading cause of death and morbidity for adults worldwide. Persistent inflammation triggered by the dead cells or cell debris is a major contributor to post-stroke brain damage. Effective efferocytosis might be an efficient strategy to minimize inflammation and restore brain homeostasis for neuronal regeneration and function recovery. In this review, we will discuss the phagocytes in the brain, the molecular mechanisms underlying efferocytosis, the role of efferocytosis in inflammation resolution, and the potential therapeutic applications targeting efferocytosis in stroke.
Humans
;
Stroke
;
Phagocytosis/physiology*
;
Inflammation
;
Apoptosis/physiology*
;
Animals
;
Phagocytes/physiology*
;
Brain/metabolism*
;
Efferocytosis
6.Suppressing fatty acid synthase by type I interferon and chemical inhibitors as a broad spectrum anti-viral strategy against SARS-CoV-2.
Saba R ALIYARI ; Amir Ali GHAFFARI ; Olivier PERNET ; Kislay PARVATIYAR ; Yao WANG ; Hoda GERAMI ; Ann-Jay TONG ; Laurent VERGNES ; Armin TAKALLOU ; Adel ZHANG ; Xiaochao WEI ; Linda D CHILIN ; Yuntao WU ; Clay F SEMENKOVICH ; Karen REUE ; Stephen T SMALE ; Benhur LEE ; Genhong CHENG
Acta Pharmaceutica Sinica B 2022;12(4):1624-1635
SARS-CoV-2 is an emerging viral pathogen and a major global public health challenge since December of 2019, with limited effective treatments throughout the pandemic. As part of the innate immune response to viral infection, type I interferons (IFN-I) trigger a signaling cascade that culminates in the activation of hundreds of genes, known as interferon stimulated genes (ISGs), that collectively foster an antiviral state. We report here the identification of a group of type I interferon suppressed genes, including fatty acid synthase (FASN), which are involved in lipid metabolism. Overexpression of FASN or the addition of its downstream product, palmitate, increased viral infection while knockout or knockdown of FASN reduced infection. More importantly, pharmacological inhibitors of FASN effectively blocked infections with a broad range of viruses, including SARS-CoV-2 and its variants of concern. Thus, our studies not only suggest that downregulation of metabolic genes may present an antiviral strategy by type I interferon, but they also introduce the potential for FASN inhibitors to have a therapeutic application in combating emerging infectious diseases such as COVID-19.
7.Camrelizumab salvage therapy for extrahepatic recurrent hepatocellular carcinoma with PD-L1 negativity in transplanted liver tissue
Yinan DENG ; Guoying WANG ; Jianfeng WANG ; Linda FAN ; Yingcai ZHANG ; Tong ZHANG ; Xuhong YI ; Jian ZHANG ; Hua LI ; Yang YANG
Chinese Journal of Organ Transplantation 2022;43(5):276-280
Objective:To explore the safety and efficacy of camrelizumab salvage therapy for extrahepatic recurrent hepatocellular carcinoma with PD-L1 negativity in transplanted liver tissue.Methods:From May 2020 to December 2020, retrospective analysis was performed for 3 cases of camrelizumab salvage therapy for extrahepatic recurrent hepatocellular carcinoma recipients with PD-L1 negative in transplanted liver tissue.Three recipients with extrahepatic recurrence progressed after first/second-line targeted drug therapy.Camrelizumab was given as salvage therapy after normal tissue of ransplanted liver was confirmed as negative for PD-L1 by immunohistochemistry.The safety and efficacy of treatment were observed by monitoring the changes in the levels of alanine aminotransferase, aspartate aminotransferase and bilirubin, the occurrence of complications and the outcome of treatment before and after dosing.Results:During a follow-up period of 1.5 to 15.5 months, no recipients showed acute rejection symptoms such as sharp elevations of transaminase and bilirubin.Headache ( n=1), vomiting ( n=1) and fatigue & hypertension ( n=1) became relieved after treatment.As of February 28, 2022, there were one survivor and two deaths.The fatal causes were tumor progression ( n=1) and thoracic aortic rupture due to esophageal perforation ( n=1). The survival time of recipients was (11-15.5) months and the progression-free survival time (4-6) months. Conclusions:For extrahepatic recurrent hepatocellular carcinoma with PD-L1-negative liver transplantation in normal liver tissue, camrelizumab salvage therapy can control tumor progression to a certain extent and prolong the survival time of recipients.
8.Lingguizhugan Decoction, a Chinese herbal formula, improves insulin resistance in overweight/obese subjects with non-alcoholic fatty liver disease: a translational approach.
Liang DAI ; Jingjuan XU ; Baocheng LIU ; Yanqi DANG ; Ruirui WANG ; Lijie ZHUANG ; Dong LI ; Lulu JIAO ; Jianying WANG ; Lei ZHANG ; Linda L D ZHONG ; Wenjun ZHOU ; Guang JI
Frontiers of Medicine 2022;16(5):745-759
Lingguizhugan Decoction (LGZG) has been investigated in basic studies, with satisfactory effects on insulin resistance in non-alcoholic fatty liver disease (NAFLD). This translational approach aimed to explore the effect and underlying mechanism of LGZG in clinical setting. A randomized, double-blinded, placebo-controlled trial was performed. A total of 243 eligible participants with NAFLD were equally allocated to receive LGZG (two groups: standard dose and low dose) or placebo for 12 weeks on the basis of lifestyle modifications. The primary efficacy variable was homeostasis model assessment of insulin resistance (HOMA-IR). Analyses were performed in two populations in accordance with body mass index (BMI; overweight/obese, BMI ⩾ 24 kg/m2; lean, BMI < 24 kg/m2). For overweight/obese participants, low-dose LGZG significantly decreased their HOMA-IR level compared with placebo (-0.19 (1.47) versus 0.08 (1.99), P = 0.038). For lean subjects, neither dose of LGZG showed a superior effect compared with placebo. Methylated DNA immunoprecipitation sequencing and real-time qPCR found that the DNA N6-methyladenine modification levels of protein phosphatase 1 regulatory subunit 3A (PPP1R3A) and autophagy related 3 (ATG3) significantly increased after LGZG intervention in overweight/obese population. Low-dose LGZG effectively improved insulin resistance in overweight/obese subjects with NAFLD. The underlying mechanism may be related to the regulation of DNA N6-methyladenine modification of PPP1R3A and ATG3. Lean subjects may not be a targeted population for LGZG.
Humans
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Overweight/drug therapy*
;
Insulin Resistance
;
Obesity/drug therapy*
;
China
;
DNA/therapeutic use*
9.Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality
Thanh N. NGUYEN ; Muhammad M. QURESHI ; Piers KLEIN ; Hiroshi YAMAGAMI ; Mohamad ABDALKADER ; Robert MIKULIK ; Anvitha SATHYA ; Ossama Yassin MANSOUR ; Anna CZLONKOWSKA ; Hannah LO ; Thalia S. FIELD ; Andreas CHARIDIMOU ; Soma BANERJEE ; Shadi YAGHI ; James E. SIEGLER ; Petra SEDOVA ; Joseph KWAN ; Diana Aguiar DE SOUSA ; Jelle DEMEESTERE ; Violiza INOA ; Setareh Salehi OMRAN ; Liqun ZHANG ; Patrik MICHEL ; Davide STRAMBO ; João Pedro MARTO ; Raul G. NOGUEIRA ; ; Espen Saxhaug KRISTOFFERSEN ; Georgios TSIVGOULIS ; Virginia Pujol LEREIS ; Alice MA ; Christian ENZINGER ; Thomas GATTRINGER ; Aminur RAHMAN ; Thomas BONNET ; Noémie LIGOT ; Sylvie DE RAEDT ; Robin LEMMENS ; Peter VANACKER ; Fenne VANDERVORST ; Adriana Bastos CONFORTO ; Raquel C.T. HIDALGO ; Daissy Liliana MORA CUERVO ; Luciana DE OLIVEIRA NEVES ; Isabelle LAMEIRINHAS DA SILVA ; Rodrigo Targa MARTÍNS ; Letícia C. REBELLO ; Igor Bessa SANTIAGO ; Teodora SADELAROVA ; Rosen KALPACHKI ; Filip ALEXIEV ; Elena Adela CORA ; Michael E. KELLY ; Lissa PEELING ; Aleksandra PIKULA ; Hui-Sheng CHEN ; Yimin CHEN ; Shuiquan YANG ; Marina ROJE BEDEKOVIC ; Martin ČABAL ; Dusan TENORA ; Petr FIBRICH ; Pavel DUŠEK ; Helena HLAVÁČOVÁ ; Emanuela HRABANOVSKA ; Lubomír JURÁK ; Jana KADLČÍKOVÁ ; Igor KARPOWICZ ; Lukáš KLEČKA ; Martin KOVÁŘ ; Jiří NEUMANN ; Hana PALOUŠKOVÁ ; Martin REISER ; Vladimir ROHAN ; Libor ŠIMŮNEK ; Ondreij SKODA ; Miroslav ŠKORŇA ; Martin ŠRÁMEK ; Nicolas DRENCK ; Khalid SOBH ; Emilie LESAINE ; Candice SABBEN ; Peggy REINER ; Francois ROUANET ; Daniel STRBIAN ; Stefan BOSKAMP ; Joshua MBROH ; Simon NAGEL ; Michael ROSENKRANZ ; Sven POLI ; Götz THOMALLA ; Theodoros KARAPANAYIOTIDES ; Ioanna KOUTROULOU ; Odysseas KARGIOTIS ; Lina PALAIODIMOU ; José Dominguo BARRIENTOS GUERRA ; Vikram HUDED ; Shashank NAGENDRA ; Chintan PRAJAPATI ; P.N. SYLAJA ; Achmad Firdaus SANI ; Abdoreza GHOREISHI ; Mehdi FARHOUDI ; Elyar SADEGHI HOKMABADI ; Mazyar HASHEMILAR ; Sergiu Ionut SABETAY ; Fadi RAHAL ; Maurizio ACAMPA ; Alessandro ADAMI ; Marco LONGONI ; Raffaele ORNELLO ; Leonardo RENIERI ; Michele ROMOLI ; Simona SACCO ; Andrea SALMAGGI ; Davide SANGALLI ; Andrea ZINI ; Kenichiro SAKAI ; Hiroki FUKUDA ; Kyohei FUJITA ; Hirotoshi IMAMURA ; Miyake KOSUKE ; Manabu SAKAGUCHI ; Kazutaka SONODA ; Yuji MATSUMARU ; Nobuyuki OHARA ; Seigo SHINDO ; Yohei TAKENOBU ; Takeshi YOSHIMOTO ; Kazunori TOYODA ; Takeshi UWATOKO ; Nobuyuki SAKAI ; Nobuaki YAMAMOTO ; Ryoo YAMAMOTO ; Yukako YAZAWA ; Yuri SUGIURA ; Jang-Hyun BAEK ; Si Baek LEE ; Kwon-Duk SEO ; Sung-Il SOHN ; Jin Soo LEE ; Anita Ante ARSOVSKA ; Chan Yong CHIEH ; Wan Asyraf WAN ZAIDI ; Wan Nur Nafisah WAN YAHYA ; Fernando GONGORA-RIVERA ; Manuel MARTINEZ-MARINO ; Adrian INFANTE-VALENZUELA ; Diederik DIPPEL ; Dianne H.K. VAN DAM-NOLEN ; Teddy Y. WU ; Martin PUNTER ; Tajudeen Temitayo ADEBAYO ; Abiodun H. BELLO ; Taofiki Ajao SUNMONU ; Kolawole Wasiu WAHAB ; Antje SUNDSETH ; Amal M. AL HASHMI ; Saima AHMAD ; Umair RASHID ; Liliana RODRIGUEZ-KADOTA ; Miguel Ángel VENCES ; Patrick Matic YALUNG ; Jon Stewart Hao DY ; Waldemar BROLA ; Aleksander DĘBIEC ; Malgorzata DOROBEK ; Michal Adam KARLINSKI ; Beata M. LABUZ-ROSZAK ; Anetta LASEK-BAL ; Halina SIENKIEWICZ-JAROSZ ; Jacek STASZEWSKI ; Piotr SOBOLEWSKI ; Marcin WIĄCEK ; Justyna ZIELINSKA-TUREK ; André Pinho ARAÚJO ; Mariana ROCHA ; Pedro CASTRO ; Patricia FERREIRA ; Ana Paiva NUNES ; Luísa FONSECA ; Teresa PINHO E MELO ; Miguel RODRIGUES ; M Luis SILVA ; Bogdan CIOPLEIAS ; Adela DIMITRIADE ; Cristian FALUP-PECURARIU ; May Adel HAMID ; Narayanaswamy VENKETASUBRAMANIAN ; Georgi KRASTEV ; Jozef HARING ; Oscar AYO-MARTIN ; Francisco HERNANDEZ-FERNANDEZ ; Jordi BLASCO ; Alejandro RODRÍGUEZ-VÁZQUEZ ; Antonio CRUZ-CULEBRAS ; Francisco MONICHE ; Joan MONTANER ; Soledad PEREZ-SANCHEZ ; María Jesús GARCÍA SÁNCHEZ ; Marta GUILLÁN RODRÍGUEZ ; Gianmarco BERNAVA ; Manuel BOLOGNESE ; Emmanuel CARRERA ; Anchalee CHUROJANA ; Ozlem AYKAC ; Atilla Özcan ÖZDEMIR ; Arsida BAJRAMI ; Songul SENADIM ; Syed I. HUSSAIN ; Seby JOHN ; Kailash KRISHNAN ; Robert LENTHALL ; Kaiz S. ASIF ; Kristine BELOW ; Jose BILLER ; Michael CHEN ; Alex CHEBL ; Marco COLASURDO ; Alexandra CZAP ; Adam H. DE HAVENON ; Sushrut DHARMADHIKARI ; Clifford J. ESKEY ; Mudassir FAROOQUI ; Steven K. FESKE ; Nitin GOYAL ; Kasey B. GRIMMETT ; Amy K. GUZIK ; Diogo C. HAUSSEN ; Majesta HOVINGH ; Dinesh JILLELA ; Peter T. KAN ; Rakesh KHATRI ; Naim N. KHOURY ; Nicole L. KILEY ; Murali K. KOLIKONDA ; Stephanie LARA ; Grace LI ; Italo LINFANTE ; Aaron I. LOOCHTAN ; Carlos D. LOPEZ ; Sarah LYCAN ; Shailesh S. MALE ; Fadi NAHAB ; Laith MAALI ; Hesham E. MASOUD ; Jiangyong MIN ; Santiago ORGETA-GUTIERREZ ; Ghada A. MOHAMED ; Mahmoud MOHAMMADEN ; Krishna NALLEBALLE ; Yazan RADAIDEH ; Pankajavalli RAMAKRISHNAN ; Bliss RAYO-TARANTO ; Diana M. ROJAS-SOTO ; Sean RULAND ; Alexis N. SIMPKINS ; Sunil A. SHETH ; Amy K. STAROSCIAK ; Nicholas E. TARLOV ; Robert A. TAYLOR ; Barbara VOETSCH ; Linda ZHANG ; Hai Quang DUONG ; Viet-Phuong DAO ; Huynh Vu LE ; Thong Nhu PHAM ; Mai Duy TON ; Anh Duc TRAN ; Osama O. ZAIDAT ; Paolo MACHI ; Elisabeth DIRREN ; Claudio RODRÍGUEZ FERNÁNDEZ ; Jorge ESCARTÍN LÓPEZ ; Jose Carlos FERNÁNDEZ FERRO ; Niloofar MOHAMMADZADEH ; Neil C. SURYADEVARA, MD ; Beatriz DE LA CRUZ FERNÁNDEZ ; Filipe BESSA ; Nina JANCAR ; Megan BRADY ; Dawn SCOZZARI
Journal of Stroke 2022;24(2):256-265
Background:
and Purpose Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year.
Methods:
We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020).
Results:
There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths.
Conclusions
During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT.
10.Tojapride Reverses Esophageal Epithelial Inflammatory Responses on Reflux Esophagitis Model Rats.
Xiao-Lan YIN ; Linda ZHONG ; Cheng-Yuan LIN ; Xiao-Shuang SHI ; Jiao ZHANG ; Zheng-Yi CHEN ; Hui CHE ; Xiang-Xue MA ; Ya-Xin TIAN ; Yuan-Zhi DUAN ; Lin LU ; Hai-Jie JI ; Ying-Pan ZHAO ; Xu-Dong TANG ; Feng-Yun WANG
Chinese journal of integrative medicine 2021;27(8):604-612
OBJECTIVE:
To investigate the mechanism of Tojapride, a Chinese herbal formula extract, on strengthening the barrier function of esophageal epithelium in rats with reflux esophagitis (RE).
METHODS:
Ten out of 85 SD rats were randomly selected as the sham group (n10), and 75 rats were developed a reflux esophagitis model (RE) by the esophageal and duodenal side-to-side anastomosis. Fifty successful modeling rats were divided into different medicated groups through a random number table including the model, low-, medium-, and high-dose of Tojapride as well as omeprazole groups (n10). Three doses of Tojapride [5.73, 11.46, 22.92 g/(kg•d)] and omeprazole [4.17 mg/(kg•d)] were administrated intragastrically twice daily for 3 weeks. And the rats in the sham and model groups were administered 10 mL/kg distilled water. Gastric fluid was collected and the supernatant was kept to measure for volume, pH value and acidity. Esophageal tissues were isolated to monitor the morphological changes through hematoxylin-eosin (HE) staining, and esophageal epithelial ultrastructure was observed by transmission electron microscopy. The expressions of nuclear factor kappa-light-chain-enhancer of activated B cells p65 (NF-KBp65), κB kinase beta (IKKß), occludin, and zonula occludens-1 (ZO-1) in the esophageal tissues were measured by immunohistochemistry and Western blot, respectively.
RESULTS:
The gastric pH value in the model group was significantly lower than the sham group (P<0.05). Compared with the model group, gastric pH value in the omeprazole and medium-dose of Tojapride groups were significantly higher (P<0.05). A large area of ulceration was found on the esophageal mucosa from the model rats, while varying degrees of congestion and partially visible erosion was observed in the remaining groups. Remarkable increase in cell gap width and decrease in desmosome count was seen in RE rats and the effect was reversed by Tojapride treatment. Compared with the sham group, the IKKß levels were significantly higher in the model group (P<0.05). However, the IKKß levels were down-regulated after treatment by all doses of Tojapride (P<0.01 or P<0.05). The occluding and ZO-1 levels decreased in the model group compared with the sham group (Ps0.01 or Ps0.05), while both indices were significantly up-regulated in the Tojapride-treated groups (P<0.01 or P<0.05).
CONCLUSIONS
Tojapride could improve the pathological conditions of esophageal epithelium in RE rats. The underlying mechanisms may involve in down-regulating the IKKß expression and elevating ZO-1 and occludin expression, thereby alleviating the inflammation of the esophagus and strengthening the barrier function of the esophageal epithelium.

Result Analysis
Print
Save
E-mail