1.Analysis of Animal Models of Wet Age-related Macular Degeneration Based on Clinical Disease-syndrome Characteristics of Traditional Chinese and Western Medicine
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):183-190
ObjectiveIn recent years, with the deepening trend of population aging in China, the incidence of age-related macular degeneration (AMD) has been rising. Wet age-related macular degeneration (wAMD) is a type of advanced AMD that can cause severe vision loss. Based on the clinical disease-syndrome characteristics of wAMD, this study reviewed and analyzed existing wAMD animal models, including the animals used, modeling methods, and the advantages and disadvantages of each model, aiming to provide references for the establishment and study of wAMD models integrating disease and syndrome. MethodsLiterature on wAMD-related animal models was retrieved from China National Knowledge Infrastructure (CNKI), Wanfang Data, VIP, and PubMed. Relevant indicators were collected and analyzed, and model characteristics were quantified and evaluated according to the diagnostic criteria of diseases and syndromes in both traditional Chinese medicine (TCM) and Western medicine. ResultsCurrently, the alignment of wAMD models with Western medicine clinical syndromes mainly reflects the characteristics of macular neovascularization (MNV) and fundus changes, with limited observation of visual function. For TCM, scoring mainly focuses on ocular syndromes, while systemic syndromes are insufficiently observed, which is inadequate to fully reflect the complexity of wAMD pathogenesis and manifestations. Among the main models, alignment with Western medicine clinical syndromes is relatively high. Laser photocoagulation-induced models are the most commonly used and show the highest alignment, and their correspondence with the TCM syndrome of “spleen deficiency and dampness retention” is relatively high. ConclusionCurrent models generally show moderate alignment with clinical disease-syndrome characteristics in both TCM and Western medicine, especially with TCM syndromes, where alignment is low. This limits the development and study of models integrating disease and syndrome. Future research should further explore other TCM syndrome types and compound syndromes to establish wAMD animal models with higher alignment with TCM.
2.Analysis of Animal Models of Dry Age-related Macular Degeneration Based on Clinical Disease-syndrome Characteristics of Traditional Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Yun GAO ; Jiahao LI ; Jianying YANG ; Xiaoshan ZHANG ; Honghao BI ; Menglu MIAO ; Huiyi GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):191-197
ObjectiveAge-related macular degeneration (AMD) is one of the leading causes of low vision and blindness in people over 50 years old, and dry AMD (dAMD) is one type for which there is currently no clear treatment. On the basis of the diagnosis and clinical characteristics of dAMD in traditional Chinese and Western medicine, this paper evaluated the fitting degrees of existing animal models of dAMD with clinical characteristics according to the evaluation methods of animal models, and put forward suggestions and prospects. MethodsLiterature on animal models of dAMD was searched against database, and the characteristics of the models were assigned according to the diagnosis criteria of diseases and syndromes of traditional Chinese and Western medicine, and the fitting degrees of the models with clinical characteristics were analyzed and evaluated. ResultsAt present, the animal models of dAMD are mainly established targeting complement factors, chemokines, oxidative damage, lipid/glucose metabolism, and natural strains. Most of the models can simulate the major pathological changes of dAMD, showing the fitting degree of 25%-50% with clinical characteristics in Western medicine. However, the evaluation of traditional Chinese medicine (TCM) syndromes, especially the evaluation of secondary syndromes, is missing, and the models present low fitting degrees with the clinical characteristics in TCM. ConclusionExisting animal models of dAMD are mostly established under the guidance of Western diagnostic standards, which reproduce the main disease characteristics of Western medicine and lack observation of TCM syndromes. Future studies can pay attention to the intervention factors and evaluation systems of spleen deficiency Qi deficiency and liver-kidney Yin deficiency syndrome and build the animal model of dAMD with integration of disease and syndrome based on clinical characteristics of traditional Chinese and Western medicine.
3.Analysis of Animal Models of Retinitis Pigmentosa Based on Diagnostic Features of Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Jiefeng CHEN ; Xiaoxiao ZHU ; Yina QI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):198-203
Retinitis pigmentosa (RP) is the most common hereditary blinding eye disease in clinical practice, with the pathogenesis remaining unclear. Patients experience progressive apoptosis of retinal photoreceptor cells, accompanied by degeneration of retinal pigment epithelium (RPE) cells. Current Western medical treatments mainly focus on gene therapy and stem cell transplantation, showing limited efficacy. In contrast, clinical observations have confirmed the therapeutic effects of traditional Chinese medicine (TCM) treatments. Establishing an RP animal model that aligns with the diagnostic features of both TCM and Western medicine could help combine the strengths of both approaches, thereby broadening the treatment options for RP. This study categorizes and summarizes the existing RP animal models in terms of classification, types, inheritance patterns, and alignment with clinical manifestations. It is found that current RP models are primarily derived from natural animal models such as RD mice and RCS rats, transgenic animal models like RPE-65 knockout mice and rhodopsin gene knockout mice, and chemically induced models such as those created by monochromatic light exposure or N-ethyl-N-nitrosourea (ENU) administration. These three categories of models focus more on detecting RP-related histopathological, molecular biological, and cellular immunological indicators, but offer limited observation of the overall characteristics of the disease and lack insight into syndrome differentiation. Although RP is a congenital genetic disease, its progression is influenced by acquired factors such as environment, constitution, emotions, and care. Current models do not fully capture the characteristics of this disease. Therefore, establishing an RP animal model based on the diagnostic features of both TCM and Western medicine will have significant implications for future experimental and clinical research.
4.Analysis of Animal Models of Retinal Vein Occlusion Based on Clinical Manifestations of Traditional Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Xiaofeng HAO ; Menglu MIAO ; Mei SUN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):204-209
ObjectiveRetinal vein occlusion (RVO) is the second most common vascular disease leading to vision loss. Since its pathogenesis remains unclear, current Western medical treatments primarily target complications such as macular edema and neovascularization. The main therapeutic approaches include intravitreal injections of anti-vascular endothelial growth factor (VEGF) agents or corticosteroids, laser photocoagulation, and pars plana vitrectomy. However, these treatments cannot fully reverse disease progression or structural damage. Traditional Chinese medicine (TCM) has unique advantages in the clinical diagnosis and treatment of RVO, and integrated Chinese and Western medicine approaches may offer better clinical outcomes. This study, based on the clinical manifestations of RVO, systematically reviews the existing literature and evaluates the alignment of current RVO animal models with clinical manifestations. The aim is to identify the characteristics and limitations of existing models and provide recommendations and prospects for developing RVO animal models featuring the combination of disease and syndrome. MethodsDatabases including CNKI, Wanfang Data, PubMed, and Web of Science were searched with the keywords of "retinal vein occlusion" and "animal model". Model characteristics were assessed based on the diagnostic criteria for diseases and syndromes in both TCM and Western medicine. The alignment of each model with clinical manifestations was analyzed and evaluated. ResultsThe available RVO models were primarily established via methods such as laser photocoagulation, photodynamic therapy, diathermy, intravitreal drug injection, and mechanical modeling. These models demonstrated moderate overall alignment with clinical manifestations, mainly reflecting disease characteristics. However, they generally lack representation of TCM syndrome features. ConclusionExisting RVO models are predominantly based on Western medicine and lack TCM syndrome features. Western medical treatments for RVO have certain limitations, while syndrome differentiation and treatment in TCM offer potential advantages. Future research should focus on developing disease-syndrome integrated animal models that incorporate both pathological features and TCM syndrome characteristics. This approach will enhance the design of RVO models and facilitate both basic and clinical research, which make it a scientifically valuable and necessary endeavor.
5.Analysis of Animal Models of Wet Age-related Macular Degeneration Based on Clinical Disease-syndrome Characteristics of Traditional Chinese and Western Medicine
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):183-190
ObjectiveIn recent years, with the deepening trend of population aging in China, the incidence of age-related macular degeneration (AMD) has been rising. Wet age-related macular degeneration (wAMD) is a type of advanced AMD that can cause severe vision loss. Based on the clinical disease-syndrome characteristics of wAMD, this study reviewed and analyzed existing wAMD animal models, including the animals used, modeling methods, and the advantages and disadvantages of each model, aiming to provide references for the establishment and study of wAMD models integrating disease and syndrome. MethodsLiterature on wAMD-related animal models was retrieved from China National Knowledge Infrastructure (CNKI), Wanfang Data, VIP, and PubMed. Relevant indicators were collected and analyzed, and model characteristics were quantified and evaluated according to the diagnostic criteria of diseases and syndromes in both traditional Chinese medicine (TCM) and Western medicine. ResultsCurrently, the alignment of wAMD models with Western medicine clinical syndromes mainly reflects the characteristics of macular neovascularization (MNV) and fundus changes, with limited observation of visual function. For TCM, scoring mainly focuses on ocular syndromes, while systemic syndromes are insufficiently observed, which is inadequate to fully reflect the complexity of wAMD pathogenesis and manifestations. Among the main models, alignment with Western medicine clinical syndromes is relatively high. Laser photocoagulation-induced models are the most commonly used and show the highest alignment, and their correspondence with the TCM syndrome of “spleen deficiency and dampness retention” is relatively high. ConclusionCurrent models generally show moderate alignment with clinical disease-syndrome characteristics in both TCM and Western medicine, especially with TCM syndromes, where alignment is low. This limits the development and study of models integrating disease and syndrome. Future research should further explore other TCM syndrome types and compound syndromes to establish wAMD animal models with higher alignment with TCM.
6.Analysis of Animal Models of Dry Age-related Macular Degeneration Based on Clinical Disease-syndrome Characteristics of Traditional Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Yun GAO ; Jiahao LI ; Jianying YANG ; Xiaoshan ZHANG ; Honghao BI ; Menglu MIAO ; Huiyi GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):191-197
ObjectiveAge-related macular degeneration (AMD) is one of the leading causes of low vision and blindness in people over 50 years old, and dry AMD (dAMD) is one type for which there is currently no clear treatment. On the basis of the diagnosis and clinical characteristics of dAMD in traditional Chinese and Western medicine, this paper evaluated the fitting degrees of existing animal models of dAMD with clinical characteristics according to the evaluation methods of animal models, and put forward suggestions and prospects. MethodsLiterature on animal models of dAMD was searched against database, and the characteristics of the models were assigned according to the diagnosis criteria of diseases and syndromes of traditional Chinese and Western medicine, and the fitting degrees of the models with clinical characteristics were analyzed and evaluated. ResultsAt present, the animal models of dAMD are mainly established targeting complement factors, chemokines, oxidative damage, lipid/glucose metabolism, and natural strains. Most of the models can simulate the major pathological changes of dAMD, showing the fitting degree of 25%-50% with clinical characteristics in Western medicine. However, the evaluation of traditional Chinese medicine (TCM) syndromes, especially the evaluation of secondary syndromes, is missing, and the models present low fitting degrees with the clinical characteristics in TCM. ConclusionExisting animal models of dAMD are mostly established under the guidance of Western diagnostic standards, which reproduce the main disease characteristics of Western medicine and lack observation of TCM syndromes. Future studies can pay attention to the intervention factors and evaluation systems of spleen deficiency Qi deficiency and liver-kidney Yin deficiency syndrome and build the animal model of dAMD with integration of disease and syndrome based on clinical characteristics of traditional Chinese and Western medicine.
7.Analysis of Animal Models of Retinitis Pigmentosa Based on Diagnostic Features of Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Jiefeng CHEN ; Xiaoxiao ZHU ; Yina QI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):198-203
Retinitis pigmentosa (RP) is the most common hereditary blinding eye disease in clinical practice, with the pathogenesis remaining unclear. Patients experience progressive apoptosis of retinal photoreceptor cells, accompanied by degeneration of retinal pigment epithelium (RPE) cells. Current Western medical treatments mainly focus on gene therapy and stem cell transplantation, showing limited efficacy. In contrast, clinical observations have confirmed the therapeutic effects of traditional Chinese medicine (TCM) treatments. Establishing an RP animal model that aligns with the diagnostic features of both TCM and Western medicine could help combine the strengths of both approaches, thereby broadening the treatment options for RP. This study categorizes and summarizes the existing RP animal models in terms of classification, types, inheritance patterns, and alignment with clinical manifestations. It is found that current RP models are primarily derived from natural animal models such as RD mice and RCS rats, transgenic animal models like RPE-65 knockout mice and rhodopsin gene knockout mice, and chemically induced models such as those created by monochromatic light exposure or N-ethyl-N-nitrosourea (ENU) administration. These three categories of models focus more on detecting RP-related histopathological, molecular biological, and cellular immunological indicators, but offer limited observation of the overall characteristics of the disease and lack insight into syndrome differentiation. Although RP is a congenital genetic disease, its progression is influenced by acquired factors such as environment, constitution, emotions, and care. Current models do not fully capture the characteristics of this disease. Therefore, establishing an RP animal model based on the diagnostic features of both TCM and Western medicine will have significant implications for future experimental and clinical research.
8.Analysis of Animal Models of Retinal Vein Occlusion Based on Clinical Manifestations of Traditional Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Xiaofeng HAO ; Menglu MIAO ; Mei SUN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):204-209
ObjectiveRetinal vein occlusion (RVO) is the second most common vascular disease leading to vision loss. Since its pathogenesis remains unclear, current Western medical treatments primarily target complications such as macular edema and neovascularization. The main therapeutic approaches include intravitreal injections of anti-vascular endothelial growth factor (VEGF) agents or corticosteroids, laser photocoagulation, and pars plana vitrectomy. However, these treatments cannot fully reverse disease progression or structural damage. Traditional Chinese medicine (TCM) has unique advantages in the clinical diagnosis and treatment of RVO, and integrated Chinese and Western medicine approaches may offer better clinical outcomes. This study, based on the clinical manifestations of RVO, systematically reviews the existing literature and evaluates the alignment of current RVO animal models with clinical manifestations. The aim is to identify the characteristics and limitations of existing models and provide recommendations and prospects for developing RVO animal models featuring the combination of disease and syndrome. MethodsDatabases including CNKI, Wanfang Data, PubMed, and Web of Science were searched with the keywords of "retinal vein occlusion" and "animal model". Model characteristics were assessed based on the diagnostic criteria for diseases and syndromes in both TCM and Western medicine. The alignment of each model with clinical manifestations was analyzed and evaluated. ResultsThe available RVO models were primarily established via methods such as laser photocoagulation, photodynamic therapy, diathermy, intravitreal drug injection, and mechanical modeling. These models demonstrated moderate overall alignment with clinical manifestations, mainly reflecting disease characteristics. However, they generally lack representation of TCM syndrome features. ConclusionExisting RVO models are predominantly based on Western medicine and lack TCM syndrome features. Western medical treatments for RVO have certain limitations, while syndrome differentiation and treatment in TCM offer potential advantages. Future research should focus on developing disease-syndrome integrated animal models that incorporate both pathological features and TCM syndrome characteristics. This approach will enhance the design of RVO models and facilitate both basic and clinical research, which make it a scientifically valuable and necessary endeavor.
9.A study on the preparation of a BGN-loaded thermosensitive adhesive and its performance in barrier membrane fixation
WANG Yuzhu ; GU Junting ; LI Zhiting ; BAI Que ; DANG Gaopeng ; WANG Yifei ; SUN Xiaotang ; NIU Lina ; FANG Ming
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(1):41-53
Objective:
To investigate the barrier membrane fixation performance and enhanced guided bone regeneration (GBR) capability of a thermosensitive adhesive containing bioactive glass nanoparticles in order to provide a novel solution for membrane fixation during GBR procedures.
Methods:
M2NP@BGN (methoxyethyl acrylate-co-N-isopropylacrylamide-co-protocatechuic acid@Bioactive glass nanoparticle), a thermosensitive adhesive, was synthesized via free radical polymerization by compositing methoxyethyl acrylate, N-isopropylacrylamide, and protocatechuic acid into a basic adhesive that was modified with bioactive glass nanoparticle (BGN). The successful fabrication of basic adhesive M2NP was characterized by attenuated total reflection-Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The thermosensitive adhesive M2NP@BGN (BGN concentration of 1 mg/mL) was characterized by scanning electron microscopy and a rheometer. By adjusting the BGN concentration (0.1 mg/mL, 0.5 mg/mL, 1 mg/mL, and 2 mg/mL), the adhesive and mechanical strengths were investigated with a universal testing machine. Biocompatibility was evaluated with a cell counting kit-8 assay and hemolysis test to identify the optimal formulation. The optimal material’s extract was co-cultured with mouse bone marrow mesenchymal stem cells, and its osteogenic activity was examined in vitro by quantitative real-time PCR, alkaline phosphatase, and alizarin red S staining. The rat mandibular defect model was established, filled with bone graft, and divided into 3 groups based on membrane fixation method: M2NP@BGN (BGN concentration of 1 mg/mL) fixation group (M2NP@BGN), titanium nail fixation group (Nail), and unfixed control group (Negative). Bone regeneration was analyzed after 8 weeks by micro computed tomography and histological staining.
Results:
M2NP@BGN (BGN concentration of 1 mg/mL) was successfully synthesized and demonstrated rapid gelation under warm, humid conditions. The adhesive with a BGN concentration of 1 mg/mL exhibited the highest adhesive strength (P < 0.001) and significantly enhanced mechanical strength (P < 0.001) under 37℃ wet conditions. All formulations showed excellent biocompatibility, with cell viability > 80% and hemolysis ratio < 5%. M2NP@BGN (BGN concentration of 1 mg/mL) significantly upregulated the expression of Runx2 and Col I (P < 0.001) and enhanced the activity of osteogenic differentiation markers (P < 0.05). In the animal model, the M2NP@BGN group (BGN concentration of 1 mg/mL) achieved significantly higher bone volume fraction and better bone maturity compared to the negative and nail groups (P < 0.05).
Conclusion
M2NP@BGN (BGN concentration of 1 mg/mL) combines excellent wet adhesion with potent osteogenic activity, enhances the bone augmentation efficacy of membranes, and presents a novel fixation strategy with significant clinical translation potential for GBR therapy.
10.Mining and verification of inflammation-related genes in skeletal muscle of exhaustive exercise rats undergoing cannabidiol intervention
Wenning ZHU ; Lili SUN ; Lina PENG ; Juncheng SI ; Wanli ZANG ; Weidong YIN ; Mengqi LI
Chinese Journal of Tissue Engineering Research 2025;29(11):2347-2356
BACKGROUND:Cannabidiol is effective in ameliorating the body's inflammatory response,but no clear mechanistic studies have been conducted to ameliorate skeletal muscle inflammation induced by exhaustive exercise. OBJECTIVE:To explore the mechanism by which cannabidiol improves skeletal muscle inflammation during exhaustive exercise by using transcriptome sequencing technology. METHODS:Thirty-six Sprague-Dawley rats were randomly divided into six groups:blank control group,exercise coconut oil group,exercise control group,50 mg/kg cannabidiol group,60 mg/kg cannabidiol group,and 70 mg/kg cannabidiol group,with six rats in each group.Except for rats in the blank control group,rats in each group were subjected to swimming exercise for 9 days to produce the exhaustive exercise model.At the end of each swimming exercise,rats in the cannabidiol groups were given 2 mL of fat-soluble cannabidiol at different concentrations(50,60,and 70 mg/kg)by gavage;rats in the exercise coconut oil group were given the same volume of coconut oil by gavage until the end of the exercise on the 9th day;and rats in the blank control group and the exercise control group were not given any special treatment.The levels of inflammatory factors and differentially expressed genes in the skeletal muscle of rats in each group were determined using ELISA and transcriptome sequencing techniques.Differentially expressed genes obtained were subjected to KEGG analysis,and the accuracy of the sequencing data was verified by fluorescence quantitative PCR. RESULTS AND CONCLUSION:The results of ELISA showed that the contents of interleukin-6(P<0.05),tumor necrosis factor-α(P<0.01),interleukin-10 and other inflammatory factors in the exercise group increased significantly compared with the blank control group and the coconut oil group.After cannabidiol intervention,the mass concentrations of interleukin-6 and tumor necrosis factor-α showed a sequential decrease with increasing cannabidiol concentration.By comparing GO and KEGG databases,the functional properties of differentially expressed genes were analyzed,and the results showed that the differentially expressed genes were mainly involved in the tumor necrosis factor signaling pathway and the Toll-like receptor signaling pathway.RT-qPCR results showed that the trends of five randomly selected differentially expressed genes were in agreement with the transcriptome sequencing results.To conclude,cannabidiol can improve skeletal muscle inflammation caused by exhaustive exercise.


Result Analysis
Print
Save
E-mail