1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Effect of deep muscle stimulation combined with electromyographic biofeedback on the spasms of the triceps surae and gait changes after stroke
Qiming ZHANG ; Di LIAO ; Zhiliang ZHONG ; Lihua LIN ; Xiang ZHENG ; Qiong LI ; Sharui SHAN
Chinese Journal of Tissue Engineering Research 2025;29(2):385-392
BACKGROUND:Deep muscle stimulation has the effects of releasing muscle adhesion,relieving muscle spasm,improving and restoring muscle compliance and elasticity.Electromyographic biofeedback therapy can promote nerve recovery and improve lower limb motor function and gait. OBJECTIVE:To observe the effect of the effect of deep muscle stimulation combined with electromyographic biofeedback therapy on the spasm of the triceps surae and gait changes after stroke by using a digital muscle detector and three-dimensional gait analysis system. METHODS:A total of 72 patients who met the inclusion criteria were selected from the Rehabilitation Department of the First Affiliated Hospital of Guangdong Pharmaceutical University from October 2020 to October 2023.And they were enrolled and randomly divided into two groups(n=36 per group):a control group and a combined group.The control group received routine rehabilitation therapies,electromyographic biofeedback and pseudo deep muscle stimulation,while the combined group received true deep muscle stimulation treatment on the basis of the control group,five times per week,for 4 consecutive weeks.The oscillation frequency and dynamic stiffness of the affected gastrocnemius muscle,active range of motion of the ankle dorsiflexion muscle,electromyographic signal of the tibialis anterior muscle,Fugl-Meyer assessment of the lower limbs,and three-dimensional gait analysis parameters were statistically analyzed before and after treatment in two groups. RESULTS AND CONCLUSION:After treatment,oscillation frequency and dynamic stiffness values of the inner and outer sides of the affected gastrocnemius muscle in both groups of patients were significantly reduced compared with before treatment(P<0.05),and the combined group showed a more significant decrease compared with the control group(P<0.05).The active range of motion of the ankle dorsiflexion muscle,electromyographic signal of the tibialis anterior muscle,and Fugl-Meyer scores after treatment were significantly increased or improved compared with before treatment(P<0.05),while the combined group showed a more significant increase or improvement compared with the control group(P<0.05).In terms of gait parameters,the walking speed,frequency,and stride in both groups of patients were significantly increased compared with before treatment(P<0.05),while the combined group showed a more significant increase compared with the control group(P<0.05).The percentage time of support phase on the healthy side was shortened compared with before treatment(P<0.05),while the combined group showed a more significant decrease compared with the control group(P<0.05).In addition,there was no significant difference between the two groups except for the percentage of healthy side support(P>0.05).To conclude,the combination of deep muscle stimulation and electromyographic biofeedback can effectively alleviate triceps spasm in the short term after stroke,improve ankle dorsiflexion function,enhance lower limb motor function,and improve gait.The treatment effect is significant and worthy of clinical promotion and application.
3.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.
4.Research status of Erchen Decoction in the treatment of respiratory diseases
Wan-Lin YANG ; Ying-Shan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(8):1236-1240
Erchen Decoction is derived from"Taiping Huimin and Prescription Bureau",which is mainly composed of pinellia,Tangerine peel,poria and licorice and other traditional Chinese medicine.Its main effect is to dry dampness and reduce phlegm,regulate qi and middle,and is the basic prescription for the treatment of dampness and phlegm syndrome.A large number of studies have confirmed that Erchen Decoction has a good effect on multiple respiratory diseases.At present,Erchen Decoction has a good clinical effect on respiratory diseases such as COPD,asthma,bronchitis,cough and lung cancer,and its mechanism of action may be related to anti-inflammatory,anti-tumor,anticough,improvement of airway mucus secretion and anti-oxidation.In this paper,the clinical and animal experimental studies on the treatment of respiratory diseases by Erchen Decoction in recent years are summarized.
5.Chinesization of the HEMO-FISS-QoL questionnaire and its reliability and validity
Songpeng SUN ; Shan JIA ; Fangfang XU ; Tianyu LI ; Zhiyun ZHANG ; Qiaorong CAO ; Xinjian LI ; Yao WU ; Weiping WAN ; Bin SHI ; Jianguo WANG ; Hong NI ; Longyu LIANG ; Xingxiao HUO ; Tianqing YANG ; Lei TIAN ; Ying TIAN ; Mei LIN ; Zhanjun WANG ; Yangyang ZHOU ; Hongchuan CHU ; Riyu LIAO ; Kuerban XIEYIDA ; Junhong LONG ; Shuxin ZHANG
Chinese Journal of Behavioral Medicine and Brain Science 2024;33(1):75-82
Objective:To evaluate the reliability and validity of the Chinese version of HEMO-FISS-QoL(HF-QoL) questionnaire (HF-QoL-C) in the Chinese population with hemorrhoids.Methods:From November 2021 to November 2022, a self-constructed general information questionnaire, HF-QoL-C, and the 36-item short form health survey (SF-36), Goligher classification, and Giordano severity of hemorrhoid symptom questionnaire (GSQ) were used to conduct a questionnaire survey on 760 hemorrhoid patients in the anorectal department of six hospitals. The data was analyzed for reliability and validity using SPSS 21.0 and AMOS 26.0 software.Results:The Cronbach's α coefficient of HF-QoL-C and its dimension ranged from 0.831 to 0.960, and the split coefficient was 0.832-0.915. Four common factors were extracted through principal component exploratory factor analysis. Confirmatory factor analysis indicated acceptable structural validity( χ2/ df=8.152, RSMEA=0.097, CFI=0.881, IFI=0.881, NFI=0.867). HF-QoL-C was correlated with SF36 and GSQ( r=-0.694, 0.501, both P<0.01). There were differences in the total score and dimensional scores of HF-QoL-C between surgical and drug treated patients, different grades of Goligher classification for hemorrhoidal disease, and different ranges of hemorrhoid prolapse (all P<0.001). No ceiling effect was found in the total score and the scores of each dimension(0.3%-2.0%). There was a floor effect in both psychological function and sexual activity dimensions (16.7%, 35.1%). Conclusion:HF-QoL-C has good reliability and validity, which can be used to measure the quality of life of Chinese hemorrhoid patients.
6.Identification and anti-inflammatory activity of chemical constituents and a pair of new monoterpenoid enantiomers from the fruits of Litsea cubeba
Mei-lin LU ; Wan-feng HUANG ; Yu-ming HE ; Bao-lin WANG ; Fu-hong YUAN ; Ting ZHANG ; Qi-ming PAN ; Xin-ya XU ; Jia HE ; Shan HAN ; Qin-qin WANG ; Shi-lin YANG ; Hong-wei GAO
Acta Pharmaceutica Sinica 2024;59(5):1348-1356
Eighteen compounds were isolated from the methanol extract of the fruits of
7.Discussion on the problems and countermeasures of human genetic resource management in the field of stomatology
Lin ZHANG ; Yanhua SHAN ; Mingming XU ; Yan LIU
Chinese Journal of Medical Science Research Management 2024;37(1):14-17
Objective:To analyze the problems in human genetic resource management in the field of stomatology and explore corresponding strategies.Methods:By organizing and analyzing stomatological projects related to the disclosure of information on human genetic resources by the Ministry of Science and Technology, combined with literature analysis and interviews with research management leaders, the problems in human genetic resource management in stomatological institutions were summarized and management strategies were proposed.Results:61 projects were approved for the utilization of human genetic resources in the field of stomatology, showing an increasing trend year by year. Among them, 43 projects were approved by stomatological institutions as the team leader unit; There are problems in the management of human genetic resources in stomatological institutions, such as insufficient resource development and utilization, urgent development of biological sample banks, and incomplete resource sharing mechanisms. The interview results show that the management of human genetic resources needs to be improved, and the management departments and professional management personnel, system construction, and training need to be strengthened.Conclusions:Stomatological colleges and institutions should comprehensively coordinate the management of human genetic resources, establish a sound management system, strengthen the construction of biological sample banks, expand shared resources through multiple channels, fully utilize human genetic resources for research, and promote the high-quality development of stomatology.
8.Application Study of Enzyme Inhibitors and Their Conformational Optimization in The Treatment of Alzheimer’s Disease
Chao-Yang CHU ; Biao XIAO ; Jiang-Hui SHAN ; Shi-Yu CHEN ; Chu-Xia ZHANG ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Zhi-Cheng LIN ; Kai XIE ; Shu-Jun XU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2024;51(7):1510-1529
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment, and there is a lack of effective drugs to treat AD clinically. Existing medications for the treatment of AD, such as Tacrine, Donepezil, Rivastigmine, and Aducanumab, only serve to delay symptoms and but not cure disease. To add insult to injury, these medications are associated with very serious adverse effects. Therefore, it is urgent to explore effective therapeutic drugs for AD. Recently, studies have shown that a variety of enzyme inhibitors, such as cholinesterase inhibitors, monoamine oxidase (MAO)inhibitors, secretase inhibitors, can ameliorate cholinergic system dysfunction, Aβ production and deposition, Tau protein hyperphosphorylation, oxidative stress damage, and the decline of synaptic plasticity, thereby improving AD symptoms and cognitive function. Some plant extracts from natural sources, such as Umbelliferone, Aaptamine, Medha Plus, have the ability to inhibit cholinesterase activity and act to improve learning and cognition. Isochromanone derivatives incorporating the donepezil pharmacophore bind to the catalytic active site (CAS) and peripheral anionic site (PAS) sites of acetylcholinesterase (AChE), which can inhibit AChE activity and ameliorate cholinergic system disorders. A compound called Rosmarinic acid which is found in the Lamiaceae can inhibit monoamine oxidase, increase monoamine levels in the brain, and reduce Aβ deposition. Compounds obtained by hybridization of coumarin derivatives and hydroxypyridinones can inhibit MAO-B activity and attenuate oxidative stress damage. Quinoline derivatives which inhibit the activation of AChE and MAO-B can reduce Aβ burden and promote learning and memory of mice. The compound derived from the combination of propargyl and tacrine retains the inhibitory capacity of tacrine towards cholinesterase, and also inhibits the activity of MAO by binding to the FAD cofactor of monoamine oxidase. A series of hybrids, obtained by an amide linker of chromone in combine with the benzylpiperidine moieties of donepezil, have a favorable safety profile of both cholinesterase and monoamine oxidase inhibitory activity. Single domain antibodies (such as AAV-VHH) targeted the inhibition of BACE1 can reduce Aβ production and deposition as well as the levels of inflammatory cells, which ultimately improve synaptic plasticity. 3-O-trans-p-coumaroyl maslinic acid from the extract of Ligustrum lucidum can specifically inhibit the activity of γ-secretase, thereby rescuing the long-term potentiation and enhancing synaptic plasticity in APP/PS1 mice. Inhibiting γ-secretase activity which leads to the decline of inflammatory factors (such as IFN-γ, IL-8) not only directly improves the pathology of AD, but also reduces Aβ production. Melatonin reduces the transcriptional expression of GSK-3β mRNA, thereby decreasing the levels of GSK-3β and reducing the phosphorylation induced by GSK-3β. Hydrogen sulfide can inhibitGSK-3β activity via sulfhydration of the Cys218 site of GSK-3β, resulting in the suppression of Tau protein hyperphosphorylation, which ameliorate the motor deficits and cognitive impairment in mice with AD. This article reviews enzyme inhibitors and conformational optimization of enzyme inhibitors targeting the regulation of cholinesterase, monoamine oxidase, secretase, and GSK-3β. We are hoping to provide a comprehensive overview of drug development in the enzyme inhibitors, which may be useful in treating AD.
9.Comparative Study on Flexible Ureteroscope Guided Peritoneal Dialysis Catheter Placement
Xiaozhou HAN ; Cheng ZHAO ; Jin QIU ; Jianxin LIU ; Shan LIN ; Yong ZHANG ; Changhai TIAN ; Wang LIU ; Huajun HU
Chinese Journal of Minimally Invasive Surgery 2024;24(1):29-33
Objective To explore the feasibility of peritoneal dialysis catheter placement assisted by flexible ureteroscope.Methods A retrospective analysis was conducted on clinical data of 54 cases of end-stage renal disease receiving peritoneal dialysis catheter placement from May 2019 to March 2023.The placement method was chosen by the patient.In the conventional group,23 cases were guided by a metal guide wire for insertion of the peritoneal dialysis catheter,while in the flexible ureteroscope group,31 cases were guided by flexible ureteroscope instead of guide wire for insertion of the peritoneal dialysis catheter.The success rate of catheterization,surgical time,use of postoperative analgesic,complications related to peritoneal dialysis catheter,and postoperative creatinine decrease were compared between the two groups.Results The catheter placement was successfully performed in both groups.The total incidence of complications related to peritoneal dialysis catheter in the flexible ureteroscope group was lower than that in the conventional group[6.5%(2/31)vs.30.4%(7/23),χ2 =3.878,P =0.049].Between the conventional group and the flexible ureteroscope group,there were no statistically significant differences in the surgical time,postoperative analgesic usage,and the decrease of creatinine at 2 weeks after surgery(P>0.05).The median postoperative follow-up period was10 months(range,3-24 months)in the two groups,and there were no complications such as peritoneal leakage,intestinal perforation,or intraperitoneal bleeding.Conclusion The placement of peritoneal dialysis catheter guided by the flexible ureteroscope instead of metal guide wire is a safe,visible,and accurate method,which can reduce complications related to peritoneal dialysis catheter,and detect and manage comorbidities in the abdominal cavity.
10.Acetylated STAT3-induced DIRAS2 deletion promotes the proliferation of triple-negative breast cancer cells
Lifen ZHANG ; Lu WANG ; Lin ZHAO ; Minna LUO ; Shan SHAO ; Shanzhi GU
Journal of Xi'an Jiaotong University(Medical Sciences) 2024;45(5):741-747
Objective To explore the regulation of DIRAS2 gene expression by acetylated STAT3 and its involvement in the proliferation of triple-negative breast cancer(TNBC)cells.Methods The expression levels of DIRAS2 and acetylated STAT3 in TNBC tissues and cells were analyzed by database query,Western blotting,and qRT-PCR.TNBC cell lines MDA-MB-231 and SUM159 were selected,and lentivirus or plasmid was used to construct DIRAS2 overexpression and STAT3 wild or Lys685 mutation cell lines.The CCK-8 assay was used to evaluate the effect of DIRAS2 and STAT3 acetylation on the proliferation of TNBC cells.Western blotting,pyrosequencing,ChIP and IP were employed to investigate the regulatory effect and mechanism of acetylated STAT3 on DIRAS2 expression.Results The expression of DIRAS2 was decreased in TNBC tissues and cells.Pyrosequencing analysis found that the methylation level of CpG islands in the DIRAS2 promoter was increased in TNBC cells compared with normal breast epithelial cells,which promoted the growth of cancer cells.Furthermore,TNBC cells showed an increase in STAT3 acetylation,which was accompanied by a shift in the methylation status of the DIRAS2 promoter.ChIP and IP experiments showed that acetylated STAT3 could bind to the DIRAS2 promoter,and the STAT3 Lys685 mutation disrupted the interaction between STAT3 and DNMT1.Conclusion Acetylated STAT3 induces DIRAS2 promoter methylation by recruiting DNMT1,leading to loss of DIRAS2 expression and cancer cell proliferation in TNBC.

Result Analysis
Print
Save
E-mail