1.Optimization of simmering technology of Rheum palmatum from Menghe Medical School and the changes of chemical components after processing
Jianglin XUE ; Yuxin LIU ; Pei ZHONG ; Chanming LIU ; Tulin LU ; Lin LI ; Xiaojing YAN ; Yueqin ZHU ; Feng HUA ; Wei HUANG
China Pharmacy 2025;36(1):44-50
OBJECTIVE To optimize the simmering technology of Rheum palmatum from Menghe Medical School and compare the difference of chemical components before and after processing. METHODS Using appearance score, the contents of gallic acid, 5-hydroxymethylfurfural (5-HMF), sennoside A+sennoside B, combined anthraquinone and free anthraquinone as indexes, analytic hierarchy process (AHP)-entropy weight method was used to calculate the comprehensive score of evaluation indicators; the orthogonal experiment was designed to optimize the processing technology of simmering R. palmatum with fire temperature, simmering time, paper layer number and paper wrapping time as factors; validation test was conducted. The changes in the contents of five anthraquinones (aloe-emodin, rhein, emodin, chrysophanol, physcion), five anthraquinone glycosides (barbaloin, rheinoside, rhubarb glycoside, emodin glycoside, and emodin methyl ether glycoside), two sennosides (sennoside A, sennoside B), gallic acid and 5-HMF were compared between simmered R. palmatum prepared by optimized technology and R. palmatum. RESULTS The optimal processing conditions of R. palmatum was as follows: each 80 g R. palmatum was wrapped with a layer of wet paper for 0.5 h, simmered on high heat for 20 min and then simmered at 140 ℃, the total simmering time was 2.5 h. The average comprehensive score of 3 validation tests was 94.10 (RSD<1.0%). After simmering, the contents of five anthraquinones and two sennosides were decreased significantly, while those of 5 free anthraquinones and gallic acid were increased to different extents; a new component 5-HMF was formed. CONCLUSIONS This study successfully optimizes the simmering technology of R. palmatum. There is a significant difference in the chemical components before and after processing, which can explain that simmering technology slows down the relase of R. palmatum and beneficiate it.
2.Chemical Constituents and Pharmacological Effect of Epimedium sagittatum: A Review
Lixin PEI ; Lin CHEN ; Nuo LI ; Mengyao ZHAO ; Haoyuan YANG ; Xiaoyu YANG ; Baoyu JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):282-290
Epimedium sagittatum is a perennial herb of Berberidaceae. Its leaves have a long history of medicinal use in China. This plant is widely used as a Chinese traditional medicine,with the main functions of tonifying kidney Yang,strengthening bones and muscles,and dispelling wind and dampness. It can be used for treating kidney Yang deficiency,impotence,spermatorrhea,flaccidity of bones and muscles,rheumatic arthralgia,numbness,and spasms. The chemical constituents of this plant include flavonoids,polysaccharides,lignans,and alkaloids. Flavonoids are the main active ingredients. These compounds show a wide range of biological activities,including cartilage repair,anti-aging,anti-fatigue,cough-relieving,blood glucose-lowering,and anti-tumor effects. Modern pharmacological research has shown that E. sagittatum has definite pharmacological effects on the reproductive system,respiratory system,nervous system,cardiovascular system,skeletal system,etc. It has remarkable effects of helping pregnancy,resisting osteoporosis,controlling diabetes,improving immunity,and inhibiting tumor. Under the background of advocating one health and Chinese medicine,E. sagittatum is widely used in health care products,serving as the main raw material of various products. It has great market potential and is a Chinese medicinal herb with great clinical application and research value. This paper reviews the main chemical constituents and pharmacological effects of E. sagittatum based on domestic and foreign reports, providing a theoretical basis for further study on E. sagittatum and its safe clinical application.
3.Chemical Constituents and Pharmacological Effect of Epimedium sagittatum: A Review
Lixin PEI ; Lin CHEN ; Nuo LI ; Mengyao ZHAO ; Haoyuan YANG ; Xiaoyu YANG ; Baoyu JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):282-290
Epimedium sagittatum is a perennial herb of Berberidaceae. Its leaves have a long history of medicinal use in China. This plant is widely used as a Chinese traditional medicine,with the main functions of tonifying kidney Yang,strengthening bones and muscles,and dispelling wind and dampness. It can be used for treating kidney Yang deficiency,impotence,spermatorrhea,flaccidity of bones and muscles,rheumatic arthralgia,numbness,and spasms. The chemical constituents of this plant include flavonoids,polysaccharides,lignans,and alkaloids. Flavonoids are the main active ingredients. These compounds show a wide range of biological activities,including cartilage repair,anti-aging,anti-fatigue,cough-relieving,blood glucose-lowering,and anti-tumor effects. Modern pharmacological research has shown that E. sagittatum has definite pharmacological effects on the reproductive system,respiratory system,nervous system,cardiovascular system,skeletal system,etc. It has remarkable effects of helping pregnancy,resisting osteoporosis,controlling diabetes,improving immunity,and inhibiting tumor. Under the background of advocating one health and Chinese medicine,E. sagittatum is widely used in health care products,serving as the main raw material of various products. It has great market potential and is a Chinese medicinal herb with great clinical application and research value. This paper reviews the main chemical constituents and pharmacological effects of E. sagittatum based on domestic and foreign reports, providing a theoretical basis for further study on E. sagittatum and its safe clinical application.
4.Clinical features of hepatitis B virus-related early-onset and late-onset liver cancer: A comparative analysis
Songlian LIU ; Bo LI ; Yaping WANG ; Aiqi LU ; Chujing LI ; Lihua LIN ; Qikai NING ; Ganqiu LIN ; Pei ZHOU ; Yujuan GUAN ; Jianping LI
Journal of Clinical Hepatology 2025;41(9):1837-1844
ObjectiveTo compare the clinical features of patients with hepatitis B virus (HBV)-related early-onset liver cancer and those with late-onset liver cancer, to assess the severity of the disease, and to provide a theoretical basis for the early diagnosis and treatment of liver cancer. MethodsA retrospective analysis was performed for 695 patients who were diagnosed with HBV-related liver cancer for the first time in Guangzhou Eighth People’s Hospital, Guangzhou Medical University, from January 2019 to August 2023, among whom 93 had early-onset liver cancer (defined as an age of50 years for female patients and40 years for male patients) and 602 had late-onset liver cancer (defined as an age of ≥50 years for female patients and ≥40 years for male patients). Related clinical data were collected, including demographic data, clinical symptoms at initial diagnosis, comorbidities, smoking history, drinking history, family history, routine blood test results, biochemical parameters of liver function, serum alpha-fetoprotein(AFP), virological indicators, coagulation function, and imaging findings. The pan-inflammatory indices neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) were calculated, as well as FIB-4 index, aspartate aminotransferase-to-platelet ratio index (APRI), S index, Model for End-Stage Liver Disease (MELD) score, Child-Turcotte-Pugh (CTP) score, albumin-bilirubin (AIBL) grade, and Barcelona Clinic Liver Cancer (BCLC) stage. The independent-samples t test was used for comparison of normally distributed continuous data between two groups, and the Wilcoxon rank-sum test was used for comparison of non-normally distributed continuous data between two groups; the chi-square test or Fisher’s exact test were used for comparison of categorical data between two groups. ResultsThere were significant differences between the two groups in the proportion of male patients and the incidence rates of diabetes, hypertension, and fatty liver disease (χ2=6.357, 15.230, 11.467, and 14.204, all P0.05), and compared with the late-onset liver cancer group, the early-onset liver cancer group had a significantly higher proportion of patients progressing to liver cancer without underlying cirrhosis (χ2=24.657, P0.001) and a significantly higher proportion of patients with advanced BCLC stage (χ2=6.172, P=0.046). For the overall population, the most common clinical symptoms included abdominal distension, abdominal pain, poor appetite, weakness, a reduction in body weight, edema of both lower limbs, jaundice, yellow urine, and nausea, and 55 patients (7.9%) had no obvious symptoms at the time of diagnosis and were found to have liver cancer by routine reexamination, physical examination suggesting an increase in AFP, or radiological examination indicating hepatic space-occupying lesion; compared with the late-onset liver cancer group, the patients in the early-onset liver cancer group were more likely to have the symptoms of abdominal distension, abdominal pain, and jaundice (all P0.05). Compared with the late-onset liver cancer group, the early-onset liver cancer group had a significantly larger tumor diameter (Z=2.845, P=0.034), with higher prevalence rates of multiple tumors and intrahepatic, perihepatic, or distant metastasis (χ2=5.889 and 4.079, both P0.05), and there were significant differences between the two groups in tumor location and size (χ2=3.948 and 11.317, both P0.05). Compared with the late-onset liver cancer group, the early-onset liver cancer group had significantly lower FIB-4 index, proportion of patients with HBsAg ≤1 500 IU/mL, and levels of LMR and Cr (all P0.05), as well as significantly higher positive rate of HBeAg and levels of log10 HBV DNA, AFP, WBC, Hb, PLT, NLR, PLR, TBil, ALT, Alb, and TC (all P0.05). ConclusionCompared with late-onset liver cancer, patients with early-onset liver cancer tend to develop liver cancer without liver cirrhosis and have multiple tumors, obvious clinical symptoms, and advanced BCLC stage, which indicates a poor prognosis.
5.POU2F1 inhibits miR-29b1/a cluster-mediated suppression of PIK3R1 and PIK3R3 expression to regulate gastric cancer cell invasion and migration.
Yizhi XIAO ; Ping YANG ; Wushuang XIAO ; Zhen YU ; Jiaying LI ; Xiaofeng LI ; Jianjiao LIN ; Jieming ZHANG ; Miaomiao PEI ; Linjie HONG ; Juanying YANG ; Zhizhao LIN ; Ping JIANG ; Li XIANG ; Guoxin LI ; Xinbo AI ; Weiyu DAI ; Weimei TANG ; Jide WANG
Chinese Medical Journal 2025;138(7):838-850
BACKGROUND:
The transcription factor POU2F1 regulates the expression levels of microRNAs in neoplasia. However, the miR-29b1/a cluster modulated by POU2F1 in gastric cancer (GC) remains unknown.
METHODS:
Gene expression in GC cells was evaluated using reverse-transcription polymerase chain reaction (PCR), western blotting, immunohistochemistry, and RNA in situ hybridization. Co-immunoprecipitation was performed to evaluate protein interactions. Transwell migration and invasion assays were performed to investigate the biological behavior of GC cells. MiR-29b1/a cluster promoter analysis and luciferase activity assay for the 3'-UTR study were performed in GC cells. In vivo tumor metastasis was evaluated in nude mice.
RESULTS:
POU2F1 is overexpressed in GC cell lines and binds to the miR-29b1/a cluster promoter. POU2F1 is upregulated, whereas mature miR-29b-3p and miR-29a-3p are downregulated in GC tissues. POU2F1 promotes GC metastasis by inhibiting miR-29b-3p or miR-29a-3p expression in vitro and in vivo . Furthermore, PIK3R1 and/or PIK3R3 are direct targets of miR-29b-3p and/or miR-29a-3p , and the ectopic expression of PIK3R1 or PIK3R3 reverses the suppressive effect of mature miR-29b-3p and/or miR-29a-3p on GC cell metastasis and invasion. Additionally, the interaction of PIK3R1 with PIK3R3 promotes migration and invasion, and miR-29b-3p , miR-29a-3p , PIK3R1 , and PIK3R3 regulate migration and invasion via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in GC cells. In addition, POU2F1 , PIK3R1 , and PIK3R3 expression levels negatively correlated with miR-29b-3p and miR-29a-3p expression levels in GC tissue samples.
CONCLUSIONS
The POU2F1 - miR-29b-3p / miR-29a-3p-PIK3R1 / PIK3R1 signaling axis regulates tumor progression and may be a promising therapeutic target for GC.
MicroRNAs/metabolism*
;
Humans
;
Stomach Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement/physiology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Animals
;
Mice
;
Octamer Transcription Factor-1/metabolism*
;
Mice, Nude
;
Class Ia Phosphatidylinositol 3-Kinase/metabolism*
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic/genetics*
;
Male
;
Immunohistochemistry
;
Female
6.Utility of the China-PAR Score in predicting secondary events among patients undergoing percutaneous coronary intervention.
Jianxin LI ; Xueyan ZHAO ; Jingjing XU ; Pei ZHU ; Ying SONG ; Yan CHEN ; Lin JIANG ; Lijian GAO ; Lei SONG ; Yuejin YANG ; Runlin GAO ; Xiangfeng LU ; Jinqing YUAN
Chinese Medical Journal 2025;138(5):598-600
7.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
8.Four new diglycosides from Momordicae Semen.
Cheng-Lin ZHOU ; Xiao-Bo LI ; Pei-Jun JU ; Ru DING ; Meng-Yue WANG
China Journal of Chinese Materia Medica 2025;50(6):1558-1563
The seed kernel of Momordica cochinchinensis, i.e., Momordicae Semen, is used for medicinal purposes, but to date, no research has been reported on its chemical constituents. In this study, the chemical constituents of Momordicae Semen were investigated for the first time using silica gel column chromatography, semi-preparative HPLC, HR-MS, and NMR. As a result, eight compounds were isolated and identified as: p-hydroxybenzoic acid-7-O-trehaloside(mubeside A, 1), 2,6-dimethoxyphenol-O-β-D-apiosyl-(1→2)-β-D-glucoside(mubeside B, 2), 1-O-p-methoxybenzoyl-1,4-benzenediol-4-O-β-D-apiosyl-(1→2)-β-D-glucoside(mubeside C, 3), 1-O-p-hydroxybenzoyl-1,4-benzenediol-4-O-β-D-apiosyl-(1→2)-β-D-glucoside(mubeside D, 4), gypsogenin-3-O-β-D-galactosyl-(1→2)-β-D-glucuronoside(5), quillaic acid-3-O-β-D-galactosyl-(1→2)-β-D-glucuronoside(6), violanthin(7), and kaempferitrin(8). Compounds 1-4 are new compounds, while compounds 5-8 were isolated from Momordicae Semen for the first time.
Glycosides/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
;
Molecular Structure
;
Magnetic Resonance Spectroscopy
;
Chromatography, High Pressure Liquid
9.Regulatory effects of Dangua Humai Oral Liquid on gut microbiota and mucosal barrier in mice with glucolipid metabolism disorder.
Zhuang HAN ; Lin-Xi JIN ; Zhi-Ta WANG ; Liu-Qing YANG ; Liang LI ; Yi RUAN ; Qi-Wei CHEN ; Shu-Hong YAO ; Xian-Pei HENG
China Journal of Chinese Materia Medica 2025;50(15):4315-4324
The gut microbiota regulates intestinal nutrient absorption, participates in modulating host glucolipid metabolism, and contributes to ameliorating glucolipid metabolism disorder. Dysbiosis of the gut microbiota can compromise the integrity of the intestinal mucosal barrier, induce inflammatory responses, and exacerbate insulin resistance and abnormal lipid metabolism in the host. Dangua Humai Oral Liquid, a hospital-developed formulation for regulating glucolipid metabolism, has been granted a national invention patent and demonstrates significant clinical efficacy. This study aimed to investigate the effects of Dangua Humai Oral Liquid on gut microbiota and the intestinal mucosal barrier in a mouse model with glucolipid metabolism disorder. A glucolipid metabolism disorder model was established by feeding mice a high-glucose and high-fat diet. The mice were divided into a normal group, a model group, and a treatment group, with eight mice in each group. The treatment group received a daily gavage of Dangua Humai Oral Liquid(20 g·kg~(-1)), while the normal group and model group were given an equivalent volume of sterile water. After 15 weeks of intervention, glucolipid metabolism, intestinal mucosal barrier function, and inflammatory responses were evaluated. Metagenomics and untargeted metabolomics were employed to analyze changes in gut microbiota and associated metabolic pathways. Significant differences were observed between the indicators of the normal group and the model group. Compared with the model group, the treatment group exhibited marked improvements in glucolipid metabolism disorder, alleviated pathological damage in the liver and small intestine tissue, elevated expression of recombinant claudin 1(CLDN1), occluding(OCLN), and zonula occludens 1(ZO-1) in the small intestine tissue, and reduced serum levels of inflammatory factors lipopolysaccharides(LPS), lipopolysaccharide-binding protein(LBP), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α). At the phylum level, the relative abundance of Bacteroidota decreased, while that of Firmicutes increased. Lipid-related metabolic pathways were significantly altered. In conclusion, based on the successful establishment of the mouse model of glucolipid metabolism disorder, this study confirmed that Dangua Humai Oral Liquid effectively modulates gut microbiota and mucosal barrier function, reduces serum inflammatory factor levels, and regulates lipid-related metabolic pathways, thereby ameliorating glucolipid metabolism disorder.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Mice
;
Intestinal Mucosa/microbiology*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Glycolipids/metabolism*
;
Lipid Metabolism/drug effects*
;
Administration, Oral
;
Disease Models, Animal
10.Research of injury mapping relationship of lumbar spine in reclined occupants between anthropomorphic test devices and human body model.
Yu LIU ; Jing FEI ; Xin-Ming WAN ; Pei-Feng WANG ; Zhen LI ; Xiao-Ting YANG ; Lin-Wei ZHANG ; Zhong-Hao BAI
Chinese Journal of Traumatology 2025;28(2):130-137
PURPOSE:
To judge the injury mode and injury severity of the real human body through the measured values of anthropomorphic test devices (ATD) injury indices, the mapping relationship of lumbar injury between ATD and human body model (HBM) was explored.
METHODS:
Through the ATD model and HBM simulation, the mapping relationship of lumbar injury between the 2 subjects was explored. The sled environment consisted of a semi-rigid seat with an adjustable seatback angle and a 3-point seat belt system with a seatback-mounted D-ring. Three seatback recline states of 25°, 45°, and 65° were designed, and the seat pan angle was maintained at 15°. A 23 g, 47 km/h pulse was used. The validity of the finite element model of the sled was verified by the comparison of ATD simulation and test results. ATD model was the test device for human occupant restraint for autonomous vehicles (THOR-AV) dummy model and HBM was the total human model for safety (THUMS) v6.1. The posture of the 2 models was adjusted to adapt to the 3 seat states. The lumbar response of THOR-AV and the mechanical and biomechanical data on L1 - L5 vertebrae of THUMS were output, and the response relationship between THOR-AV and THUMS was descriptive statistically analyzed.
RESULTS:
Both THOR-AV and THUMS were submarined in the 65° seatback angle case. With the change of seatback angle, the lumbar spine axial compression force (Fz) of THOR-AV and THUMS changed in the similar trend. The maximum Fz ratio of THOR-AV to THUMS at 25° and 45° seatback angle cases were 1.6 and 1.7. The flexion moment (My) and the time when the maximum My occurred in the 2 subjects were very different. In particular, the form of moment experienced by the L1 - L5 vertebrae of THUMS also changed. The changing trend of My measured by THOR-AV over time can reflect the changing trend of maximum stress of L1 and L2 of THUMS.
CONCLUSION
The Fz of ATD and HBM presents a certain proportional relationship, and there is a mapping relationship between the 2 subjects on Fz. The mapping function can be further clarified by applying more pulses and adopting more seatback angles. It is difficult to map My directly because they are very different in ATD and HBM. The My of ATD and stress of HBM lumbar showed a similar change trend over time, and there may be a hidden mapping relationship.
Humans
;
Lumbar Vertebrae/injuries*
;
Finite Element Analysis
;
Biomechanical Phenomena
;
Manikins
;
Spinal Injuries/physiopathology*

Result Analysis
Print
Save
E-mail