1.Mitral valve re-repair with leaflet augmentation for mitral regurgitation in children: A retrospective study in a single center
Fengqun MAO ; Kai MA ; Kunjing PANG ; Ye LIN ; Benqing ZHANG ; Lu RUI ; Guanxi WANG ; Yang YANG ; Jianhui YUAN ; Qiyu HE ; Zheng DOU ; Shoujun LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(07):958-962
Objective To investigate the efficacy of leaflet augmentation technique to repair the recurrent mitral valve (MV) regurgitation after mitral repair in children. Methods A retrospective analysis was conducted on the clinical data of children who underwent redo MV repair for recurrent regurgitation after initial MV repair, using a leaflet augmentation technique combined with a standardized repair strategy at Fuwai Hospital, Chinese Academy of Medical Sciences, from 2018 to 2022. The pathological features of the MV, key intraoperative procedures, and short- to mid-term follow-up outcomes were analyzed. Results A total of 24 patients (12 male, 12 female) were included, with a median age of 37.6 (range, 16.5–120.0) months. The mean interval from the initial surgery was (24.9±17.0) months. All children had severe mitral regurgitation preoperatively. The cardiopulmonary bypass time was (150.1±49.5) min, and the aortic cross-clamp time was (94.0±24.2) min. There were no early postoperative deaths. During a mean follow-up of (20.3±9.1) months, 3 (12.5%) patients developed moderate or severe mitral regurgitation (2 severe, 1 moderate). One (4.2%) patient died during follow-up, and one (4.2%) patient underwent a second MV reoperation. The left ventricular end-diastolic diameter was significantly reduced postoperatively compared to preoperatively [ (43.5±8.6) mm vs. (35.8±7.8)mm, P<0.001]. Conclusion The leaflet augmentation technique combined with a standardized repair strategy can achieve satisfactory short- to mid-term outcomes for the redo mitral repair after previous MV repair. It can be considered a safe and feasible technical option for cases with complex valvular lesions and severe pathological changes.
2.Analysis of the current status and regulatory effectiveness of daylighting and artificial lighting in primary and secondary school classrooms in Shanghai
YANG Jianping,LIN Jianhai,LI Ping,ZHENG Chaojun,WANG Yaning,LIU Jiajia,MAO Jie
Chinese Journal of School Health 2024;45(6):780-783
Objective:
To understand the current situation and regulatory effectiveness of daylighting and artificial lighting in primary and secondary school classrooms in Shanghai, so as to provide a basis for enhancing the visual environment of school classrooms.
Methods:
From April 2021 to December 2023, the daylighting and artificial lighting conditions of classrooms in 1 735 regular primary and secondary schools currently in operation in Shanghai were monitored, and the qualified rate of each indicator was calculated. The Chisquare test or Fisher exact probability method were used to compare the differences in qualification rates across different educational stages, regions, school type, both before and after the implementation of regulatory measures. The regulatory measures included convene interview, propaganda and education, supervision order, supervisory opinion paper, rectification requests and offenses and punishment.
Results:
The qualified rate of daylighting and artificial lighting in primary and secondary school classrooms was 30.1%, with a qualified daylighting rate of 85.6% and a qualified artificial lighting rate of 32.9%. There was no statistically significant differences in the qualified rate of daylighting and artificial lighting in primary and secondary schools (32.4%,28.1%;χ2=3.76,P>0.05). However, statistically significant differences were found in the qualified rate of daylighting and artificial lighting in urban and rural school classrooms (32.6%,26.7%), as well as in public and private schools (31.4%, 20.6%) (χ2=6.99,9.92,P<0.05). Following the implementation of regulatory measures, the qualified rate of classroom daylighting and artificial lighting improved from 30.1% to 83.2%, while the respective qualified rates of daylighting and artificial lighting increased from 85.6% to 91.1% and 32.9% to 90.5%. Compared to the preimplementation period, the qualified rate of classroom daylighting and artificial lighting, as well as the respective rates of daylighting and artificial lighting, all showed statistically significant differences after the implementation of regulatory measures (χ2=995.29,25.34,1 219.87,P<0.01).
Conclusions
Effective regulatory measures can promote enhanced classroom daylighting and artificial lighting. Attention should be paid to improving classroom artificial lighting, in order to provide students with enhanced visual environment.
3.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
4.Effect of LAG3 molecule on B lymphocyte subsets and its function in the liver of mice infected with Echinococcus multilocularis
Xu-Ran ZHENG ; Bing-Qing DENG ; Xue-Jiao KANG ; Yin-Shi LI ; Ainiwaer ABIDAN ; Qian YU ; Rousu ZIBIGU ; Duolikun ADILAI ; Mao-Lin WANG ; Hui WANG ; Chuan-Shan ZHANG ; Jing LI
Chinese Journal of Zoonoses 2024;40(6):529-536
This study was aimed at investigating the effect of lymphocyte activation gene-3(LAG3)on liver B lymphocyte subsets and their functions in WT and LAG3-KO mice infected with Echinococcus multilocularis(E.multilocularis).In a mouse model of E.multilocularis infection,the expression and localization of CD19 and α-SMA in liver were detected by immu nohistochemistry.CD80,CD86 and MHC-Ⅱ molecules expressed on B cells and their subsets in mice liver were detected by flow cytometry.After 12 weeks of infection,the area and percentage of CD19 in LAG3-KO group was slightly higher than that in WT group,but the difference was not statistically(t=-1.241、-1.237,P>0.05).The area and percentage of a-SMA in LAG3-KO group was higher than that in WT group(t=-3.224、-3.227,P<0.05).The proportion of CD80 and MHC-Ⅱ molecules expressed on liver B cells in LAG3-KO group was up-regulated(t=-2.379,-3.321,P<0.05).The percentage of liver B2 cells in LAG3-KO group was higher than that in WT group(t=-2.695,P<0.05).The expression of CD80 on Blb cells in LAG3-KO group was significantly up-regulated(t=-5.315,P<0.001).The proportion of CD80 of B2 cells in LAG3-KO group was lower than that in WT group(t=2.806,P<0.05).The expression of MHC-Ⅱ molecule in B2 cells in LAG3-KO group was up-regulated(t=-4.227,P<0.01).It is suggested that LAG3 molecules affected the B cell subsets and func-tion of mouse liver in the middle stage of E.multilocularis infection,especially B2 lymphocytes.LAG3 molecule exerted an in-hibitory effect on the activation of B cells and the expression of MHC-class Ⅱ molecules,suggesting that it may be involved in B cell exhaustion caused by E.multilocularis.
5.Efficacy of Pulmonary Artery Banding in Pediatric Heart Failure Patients:Two Cases Report
Zheng DOU ; Kai MA ; Benqing ZHANG ; Lu RUI ; Ye LIN ; Xu WANG ; Min ZENG ; Kunjing PANG ; Huili ZHANG ; Fengqun MAO ; Jianhui YUAN ; Qiyu HE ; Dongdong WU ; Yuze LIU ; Shoujun LI
Chinese Circulation Journal 2024;39(5):511-515
Two pediatric heart failure patients were treated with pulmonary artery banding(PAB)at Fuwai Hospital,from December 2021 to January 2022.In the first case,an 8-month-old patient presented with left ventricular non-compaction cardiomyopathy(LVNC),left ventricular systolic dysfunction,ventricular septal defect,and atrial septal defect.The second case was a 4-month-old patient with LVNC,left ventricular systolic dysfunction,and coarctation of the aorta.After PAB,the left ventricular function and shape of both patients were significantly improved,without serious surgery-related complications.In these individual cases of pediatric heart failure,pulmonary artery banding exhibited a more satisfactory efficacy and safety compared to pharmacological treatment,especially for those with unsatisfactory medication results.Future clinical data are needed to promote the rational and broader application of this therapeutic option for indicated patients.
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
8.Simultaneous content determination of eighteen nucleosides and free amino acids in Colla corii asini by UPLC-MS/MS
Shuai YANG ; Lin ZHENG ; Ming-Yan CHI ; Zi-Peng GONG ; Yue-Ting LI ; Mao-Chen WEI ; Yong HUANG
Chinese Traditional Patent Medicine 2024;46(7):2140-2146
AIM To establish a UPLC-MS/MS method for the simultaneous content determination of Asp,Guad,Adeno,Arg,Ade,Cyti,Phe,Leu,Ile,Glu,Ser,Gln,Gly,Ala,Hyp,Thr,Pro and Lys in Asini Corii Colla.METHODS The analysis was performed on a 45℃ thermostatic Waters BEH C18column(2.1 mm×50 mm,1.7 μm),with the mobile phase comprising of acetonitrile(containing 0.1% formic acid)-water flowing at 0.35 mL/min in a gradient elution manner,and electron spray ionization source was adopted in positive ion scanning with multiple reaction monitoring mode.Subsequently,chemical pattern recognition was performed by hierarchical clustering analysis,principal component analysis and orthogonal partial least squares-discriminant analysis.RESULTS Eighteen nucleosides and free amino acids showed good linear relationships within their own ranges(r≥0.999 0),whose average recoveries were 98.0%-104.9% with the RSDs of 1.6%-4.9% .Seventeen batches of samples were clustered into two categories,two principal components demonstrated the accumulative variance contribution rate of 60.75%,Leu,Phe,Ade and Guad were potential index constituents.CONCLUSION This stable and reliable method can be used for the quality control of Asini Corii Colla.
9.Comparison of CT Values between Thrombus and Postmortem Clot Based on Cadaveric Pulmonary Angiography.
Zhi-Ling TIAN ; Ruo-Lin WANG ; Jian-Hua ZHANG ; Ping HUANG ; Zhi-Qiang QIN ; Zheng-Dong LI ; He-Wen DONG ; Dong-Hua ZOU ; Mao-Wen WANG ; Zhuo LI ; Lei WAN ; Xiao-Tian YU ; Ning-Guo LIU
Journal of Forensic Medicine 2023;39(1):7-12
OBJECTIVES:
To explore the difference in CT values between pulmonary thromboembolism and postmortem clot in postmortem CT pulmonary angiography (CTPA) to further improve the application value of virtual autopsy.
METHODS:
Postmortem CTPA data with the definite cause of death from 2016 to 2019 were collected and divided into pulmonary thromboembolism group (n=4), postmortem clot group (n=5), and control group (n=5). CT values of pulmonary trunk and left and right pulmonary artery contents in each group were measured and analyzed statistically.
RESULTS:
The average CT value in the pulmonary thromboembolism group and postmortem clot group were (168.4±53.8) Hu and (282.7±78.0) Hu, respectively, which were lower than those of the control group (1 193.0±82.9) Hu (P<0.05). The average CT value of the postmortem clot group was higher than that of the pulmonary thromboembolism group (P<0.05).
CONCLUSIONS
CT value is reliable and feasible as a relatively objective quantitative index to distinguish pulmonary thromboembolism and postmortem clot in postmortem CTPA. At the same time, it can provide a scientific basis to a certain extent for ruling out pulmonary thromboembolism deaths.
Humans
;
Autopsy
;
Thrombosis
;
Pulmonary Embolism/diagnostic imaging*
;
Tomography, X-Ray Computed
;
Angiography
;
Cadaver
10.Read-through circular RNA rt-circ-HS promotes hypoxia inducible factor 1α expression and renal carcinoma cell proliferation, migration and invasiveness.
Yun Yi XU ; Zheng Zheng SU ; Lin Mao ZHENG ; Meng Ni ZHANG ; Jun Ya TAN ; Ya Lan YANG ; Meng Xin ZHANG ; Miao XU ; Ni CHEN ; Xue Qin CHEN ; Qiao ZHOU
Journal of Peking University(Health Sciences) 2023;55(2):217-227
OBJECTIVE:
To identify and characterize read-through RNAs and read-through circular RNAs (rt-circ-HS) derived from transcriptional read-through hypoxia inducible factor 1α (HIF1α) and small nuclear RNA activating complex polypeptide 1 (SNAPC1) the two adjacent genes located on chromosome 14q23, in renal carcinoma cells and renal carcinoma tissues, and to study the effects of rt-circ-HS on biological behavior of renal carcinoma cells and on regulation of HIF1α.
METHODS:
Reverse transcription-polymerase chain reaction (RT-PCR) and Sanger sequencing were used to examine expression of read-through RNAs HIF1α-SNAPC1 and rt-circ-HS in different tumor cells. Tissue microarrays of 437 different types of renal cell carcinoma (RCC) were constructed, and chromogenic in situ hybridization (ISH) was used to investigate expression of rt-circ-HS in different RCC types. Small interference RNA (siRNA) and artificial overexpression plasmids were designed to examine the effects of rt-circ-HS on 786-O and A498 renal carcinoma cell proliferation, migration and invasiveness by cell counting kit 8 (CCK8), EdU incorporation and Transwell cell migration and invasion assays. RT-PCR and Western blot were used to exa-mine expression of HIF1α and SNAPC1 RNA and proteins after interference of rt-circ-HS with siRNA, respectively. The binding of rt-circ-HS with microRNA 539 (miR-539), and miR-539 with HIF1α 3' untranslated region (3' UTR), and the effects of these interactions were investigated by dual luciferase reporter gene assays.
RESULTS:
We discovered a novel 1 144 nt rt-circ-HS, which was derived from read-through RNA HIF1α-SNAPC1 and consisted of HIF1α exon 2-6 and SNAPC1 exon 2-4. Expression of rt-circ-HS was significantly upregulated in 786-O renal carcinoma cells. ISH showed that the overall positive expression rate of rt-circ-HS in RCC tissue samples was 67.5% (295/437), and the expression was different in different types of RCCs. Mechanistically, rt-circ-HS promoted renal carcinoma cell proliferation, migration and invasiveness by functioning as a competitive endogenous inhibitor of miR-539, which we found to be a potent post-transcriptional suppressor of HIF1α, thus promoting expression of HIF1α.
CONCLUSION
The novel rt-circ-HS is highly expressed in different types of RCCs and acts as a competitive endogenous inhibitor of miR-539 to promote expression of its parental gene HIF1α and thus the proliferation, migration and invasion of renal cancer cells.
Humans
;
Carcinoma, Renal Cell/pathology*
;
Cell Proliferation
;
Hypoxia
;
Kidney Neoplasms
;
MicroRNAs/genetics*
;
Neoplasm Invasiveness/genetics*
;
RNA, Circular/metabolism*
;
RNA, Small Interfering
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*


Result Analysis
Print
Save
E-mail