1.Temporal Unfolding of Racial Ingroup Bias in Neural Responses to Perceived Dynamic Pain in Others.
Chenyu PANG ; Yuqing ZHOU ; Shihui HAN
Neuroscience Bulletin 2024;40(2):157-170
In this study, we investigated how empathic neural responses unfold over time in different empathy networks when viewing same-race and other-race individuals in dynamic painful conditions. We recorded magnetoencephalography signals from Chinese adults when viewing video clips showing a dynamic painful (or non-painful) stimulation to Asian and White models' faces to trigger painful (or neutral) expressions. We found that perceived dynamic pain in Asian models modulated neural activities in the visual cortex at 100 ms-200 ms, in the orbitofrontal and subgenual anterior cingulate cortices at 150 ms-200 ms, in the anterior cingulate cortex around 250 ms-350 ms, and in the temporoparietal junction and middle temporal gyrus around 600 ms after video onset. Perceived dynamic pain in White models modulated activities in the visual, anterior cingulate, and primary sensory cortices after 500 ms. Our findings unraveled earlier dynamic activities in multiple neural circuits in response to same-race (vs other-race) individuals in dynamic painful situations.
Adult
;
Humans
;
Brain Mapping
;
Pain
;
Empathy
;
Racism
;
Gyrus Cinguli/physiology*
;
Magnetic Resonance Imaging
;
Brain/physiology*
2.Increased functional connectivity of amygdala subregions in patients with drug-naïve panic disorder and without comorbidities.
Ping ZHANG ; Xiangyun YANG ; Yun WANG ; Huan LIU ; Limin MENG ; Zijun YAN ; Yuan ZHOU ; Zhanjiang LI
Chinese Medical Journal 2023;136(11):1331-1338
BACKGROUND:
Amygdala plays an important role in the neurobiological basis of panic disorder (PD), and the amygdala contains different subregions, which may play different roles in PD. The aim of the present study was to examine whether there are common or distinct patterns of functional connectivity of the amygdala subregions in PD using resting-state functional magnetic resonance imaging and to explore the relationship between the abnormal spontaneous functional connectivity patterns of the regions of interest (ROIs) and the clinical symptoms of PD patients.
METHODS:
Fifty-three drug-naïve, non-comorbid PD patients and 70 healthy controls (HCs) were recruited. Seed-based resting-state functional connectivity (rsFC) analyses were conducted using the bilateral amygdalae and its subregions as the ROI seed. Two samples t test was performed for the seed-based Fisher's z -transformed correlation maps. The relationship between the abnormal spontaneous functional connectivity patterns of the ROIs and the clinical symptoms of PD patients was investigated by Pearson correlation analysis.
RESULTS:
PD patients showed increased rsFC of the bilateral amygdalae and almost all the amygdala subregions with the precuneus/posterior cingulate gyrus compared with the HC group (left amygdala [lAMY]: t = 4.84, P <0.001; right amygdala [rAMY]: t = 4.55, P <0.001; left centromedial amygdala [lCMA]: t = 3.87, P <0.001; right centromedial amygdala [rCMA]: t = 3.82, P = 0.002; left laterobasal amygdala [lBLA]: t = 4.33, P <0.001; right laterobasal amygdala [rBLA]: t = 4.97, P <0.001; left superficial amygdala [lSFA]: t = 3.26, P = 0.006). The rsFC of the lBLA with the left angular gyrus/inferior parietal lobule remarkably increased in the PD group ( t = 3.70, P = 0.003). And most of the altered rsFCs were located in the default mode network (DMN). A significant positive correlation was observed between the severity of anxiety and the rsFC between the lSFA and the left precuneus in PD patients ( r = 0.285, P = 0.039).
CONCLUSIONS
Our research suggested that the increased rsFC of amygdala subregions with DMN plays an important role in the pathogenesis of PD. Future studies may further explore whether the rsFC of amygdala subregions, especially with the regions in DMN, can be used as a biological marker of PD.
Humans
;
Panic Disorder
;
Magnetic Resonance Imaging/methods*
;
Amygdala
;
Gyrus Cinguli
;
Comorbidity
3.Treadmill exercise alleviates neuropathic pain by regulating mitophagy of the anterior cingulate cortex in rats.
Cui LI ; Xiao-Ge WANG ; Shuai YANG ; Yi-Hang LYU ; Xiao-Juan GAO ; Jing CAO ; Wei-Dong ZANG
Acta Physiologica Sinica 2023;75(2):160-170
This study aimed to investigate the effect of treadmill exercise on neuropathic pain and to determine whether mitophagy of the anterior cingulate cortex (ACC) contributes to exercise-mediated amelioration of neuropathic pain. Chronic constriction injury of the sciatic nerve (CCI) was used to establish a neuropathic pain model in Sprague-Dawley (SD) rats. Von-Frey filaments were used to assess the mechanical paw withdrawal threshold (PWT), and a thermal radiation meter was used to assess the thermal paw withdrawal latency (PWL) in rats. qPCR was used to evaluate the mRNA levels of Pink1, Parkin, Fundc1, and Bnip3. Western blot was used to evaluate the protein levels of PINK1 and PARKIN. To determine the impact of the mitophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP) on pain behaviors in CCI rats, 24 SD rats were randomly divided into CCI drug control group (CCI+Veh group), CCI+CCCP low-dose group (CCI+CCCP0.25), CCI+CCCP medium-dose group (CCI+CCCP2.5), and CCI+CCCP high-dose group (CCI+CCCP5). Pain behaviors were assessed on 0, 1, 3, 5, and 7 days after modeling. To explore whether exercise regulates pain through mitophagy, 24 SD rats were divided into sham, CCI, and CCI+Exercise (CCI+Exe) groups. The rats in the CCI+Exe group underwent 4-week low-moderate treadmill training one week after modeling. The mechanical pain and thermal pain behaviors of the rats in each group were assessed on 0, 7, 14, 21, and 35 days after modeling. Western blot was used to detect the levels of the mitophagy-related proteins PINK1, PARKIN, LC3 II/LC3 I, and P62 in ACC tissues. Transmission electron microscopy was used to observe the ultrastructure of mitochondrial morphology in the ACC. The results showed that: (1) Compared with the sham group, the pain thresholds of the ipsilateral side of the CCI group decreased significantly (P < 0.001). Meanwhile, the mRNA and protein levels of Pink1 were significantly higher, and those of Parkin were lower in the CCI group (P < 0.05). (2) Compared with the CCI+Veh group, each CCCP-dose group showed higher mechanical and thermal pain thresholds, and the levels of PINK1 and LC3 II/LC3 I were elevated significantly (P < 0.05, P < 0.01). (3) The pain thresholds of the CCI+Exe group increased significantly compared with those of the CCI group after treadmill intervention (P < 0.001, P < 0.01). Compared with the CCI group, the protein levels of PINK1 and P62 were decreased (P < 0.001, P < 0.01), and the protein levels of PARKIN and LC3 II/LC3 I were increased in the CCI+Exe group (P < 0.01, P < 0.05). Rod-shaped mitochondria were observed in the ACC of CCI+Exe group, and there were little mitochondrial fragmentation, swelling, or vacuoles. The results suggest that the mitochondrial PINK1/PARKIN autophagy pathway is blocked in the ACC of neuropathic pain model rats. Treadmill exercise could restore mitochondrial homeostasis and relieve neuropathic pain via the PINK1/PARKIN pathway.
Rats
;
Animals
;
Mitophagy/physiology*
;
Rats, Sprague-Dawley
;
Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology*
;
Gyrus Cinguli
;
Neuralgia
;
Ubiquitin-Protein Ligases/metabolism*
;
Protein Kinases
;
Membrane Proteins/metabolism*
;
Mitochondrial Proteins/metabolism*
4.Zuogui Jiangtang Jieyu Decoction promotes neural stem cell self-renewal and activates Shh signaling in the hippocampal dentate gyrus of diabetic rats with depression.
Hui YANG ; Hua WANG ; Chenglong LI ; Xiong HE ; Shihui LEI ; Wei LI ; Pan MENG ; Jinxi WANG ; Jian LIU ; Yuhong WANG
Journal of Southern Medical University 2023;43(5):694-701
OBJECTIVE:
To investigate the effect of Zuogui Jiangtang Jieyu Decoction (ZJJ) on Shh signaling and self-renewal of neural stem cells in the hippocampal dentate gyrus of diabetic rats with depression.
METHODS:
Diabetic rat models with depression were randomly divided into model group, positive drug (metformin + fluoxetine) group, and low-, medium-, and high-dose ZJJ groups (n=16), with normal SD rats as the control group. The positive drugs and ZJJ were administered by gavage, and the rats in the control and model groups were given distilled water. After the treatment, blood glucose level was detected using test strips, and behavioral changes of the rats were assessed by forced swimming test and water maze test. ELISA was used to examine the serum level of leptin; The expressions of nestin and Brdu proteins in the dentate gyrus of the rats were detected using immunofluorescence assay, and the expressions of self-renewal marker proteins and Shh signaling proteins were detected using Western blotting.
RESULTS:
The diabetic rats with depression showed significantly increased levels of blood glucose and leptin (P < 0.01) and prolonged immobility time in forced swimming test (P < 0.01) and increased stage climbing time with reduced stage seeking time and stage crossings in water maze test (P < 0.01). The expressions of nestin and Brdu in the dentate gyrus, the expressions of cyclin D1, SOX2, Shh, Ptch1, Smo in the hippocampus and the nuclear expression of Gli-1 were decreased (P < 0.01) while hippocampal Gli-3 expression was increased significantly (P < 0.01) in the rat models. Treatment of rat models with high-dose ZJJ significantly reduced the blood glucose (P < 0.01) and leptin level (P < 0.05) and improved their performance in behavioral tests (P < 0.01). The treatment also obviously increased the expressions of nestin, Brdu, cyclin D1, SOX2, Shh, Ptch1, and Smo and the nuclear expression of Gli-1 in the dentate gyrus (P < 0.01) and reduced hippocampal expression of Gli-3 (P < 0.05) in the rat models.
CONCLUSION
ZJJ can significantly improve the self-renewal ability of neural stem cells and activate Shh signaling in dentate gyrus of diabetic rats with depression.
Animals
;
Rats
;
Blood Glucose
;
Bromodeoxyuridine
;
Cell Self Renewal
;
Cyclin D1
;
Dentate Gyrus
;
Depression
;
Diabetes Mellitus, Experimental
;
Hippocampus
;
Leptin
;
Nestin
;
Rats, Sprague-Dawley
5.An Anterior Cingulate Cortex-to-Midbrain Projection Controls Chronic Itch in Mice.
Ting-Ting ZHANG ; Su-Shan GUO ; Hui-Ying WANG ; Qi JING ; Xin YI ; Zi-Han HU ; Xin-Ren YU ; Tian-Le XU ; Ming-Gang LIU ; Xuan ZHAO
Neuroscience Bulletin 2023;39(5):793-807
Itch is an unpleasant sensation that provokes the desire to scratch. While acute itch serves as a protective system to warn the body of external irritating agents, chronic itch is a debilitating but poorly-treated clinical disease leading to repetitive scratching and skin lesions. However, the neural mechanisms underlying the pathophysiology of chronic itch remain mysterious. Here, we identified a cell type-dependent role of the anterior cingulate cortex (ACC) in controlling chronic itch-related excessive scratching behaviors in mice. Moreover, we delineated a neural circuit originating from excitatory neurons of the ACC to the ventral tegmental area (VTA) that was critically involved in chronic itch. Furthermore, we demonstrate that the ACC→VTA circuit also selectively modulated histaminergic acute itch. Finally, the ACC neurons were shown to predominantly innervate the non-dopaminergic neurons of the VTA. Taken together, our findings uncover a cortex-midbrain circuit for chronic itch-evoked scratching behaviors and shed novel insights on therapeutic intervention.
Mice
;
Animals
;
Gyrus Cinguli/physiology*
;
Pruritus/pathology*
;
Mesencephalon
;
Cerebral Cortex/pathology*
;
Neurons/pathology*
7.Endogenous corticotropin-releasing factor potentiates the excitability of presympathetic neurons in paraventricular nucleus via activation of its receptor 1 in spontaneously hypertensive rats.
Hong-Yu MA ; Xin-Qi GUO ; Qi-Yue ZHAO ; Pei-Yun YANG ; Huai-Bing ZHU ; Yue GUAN ; Yi ZHANG ; Hui-Jie MA
Acta Physiologica Sinica 2023;75(4):487-496
It is well established that increased excitability of the presympathetic neurons in the hypothalamic paraventricular nucleus (PVN) during hypertension leads to heightened sympathetic outflow and hypertension. However, the mechanism underlying the overactivation of PVN presympathetic neurons remains unclear. This study aimed to investigate the role of endogenous corticotropin-releasing factor (CRF) on the excitability of presympathetic neurons in PVN using Western blot, arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) recording, CRISPR/Cas9 technique and patch-clamp technique. The results showed that CRF protein expression in PVN was significantly upregulated in spontaneously hypertensive rats (SHRs) compared with normotensive Wistar-Kyoto (WKY) rats. Besides, PVN administration of exogenous CRF significantly increased RSNA, heart rate and ABP in WKY rats. In contrast, knockdown of upregulated CRF in PVN of SHRs inhibited CRF expression, led to membrane potential hyperpolarization, and decreased the frequency of current-evoked firings of PVN presympathetic neurons, which were reversed by incubation of exogenous CRF. Perfusion of rat brain slices with artificial cerebrospinal fluid containing CRF receptor 1 (CRFR1) blocker, NBI-35965, or CRF receptor 2 (CRFR2) blocker, Antisauvagine-30, showed that blocking CRFR1, but not CRFR2, hyperpolarized the membrane potential and inhibited the current-evoked firing of PVN presympathetic neurons in SHRs. However, blocking CRFR1 or CRFR2 did not affect the membrane potential and current-evoked firing of presympathetic neurons in WKY rats. Overall, these findings indicate that increased endogenous CRF release from PVN CRF neurons enhances the excitability of presympathetic neurons via activation of CRFR1 in SHRs.
Rats
;
Animals
;
Rats, Inbred SHR
;
Paraventricular Hypothalamic Nucleus/physiology*
;
Receptors, Corticotropin-Releasing Hormone/metabolism*
;
Rats, Inbred WKY
;
Corticotropin-Releasing Hormone/metabolism*
;
Neurons/physiology*
;
Hypertension
;
Sympathetic Nervous System
8.Circuit-Specific Control of Blood Pressure by PNMT-Expressing Nucleus Tractus Solitarii Neurons.
Shirui JUN ; Xianhong OU ; Luo SHI ; Hongxiao YU ; Tianjiao DENG ; Jinting CHEN ; Xiaojun NIE ; Yinchao HAO ; Yishuo SHI ; Wei LIU ; Yanming TIAN ; Sheng WANG ; Fang YUAN
Neuroscience Bulletin 2023;39(8):1193-1209
The nucleus tractus solitarii (NTS) is one of the morphologically and functionally defined centers that engage in the autonomic regulation of cardiovascular activity. Phenotypically-characterized NTS neurons have been implicated in the differential regulation of blood pressure (BP). Here, we investigated whether phenylethanolamine N-methyltransferase (PNMT)-expressing NTS (NTSPNMT) neurons contribute to the control of BP. We demonstrate that photostimulation of NTSPNMT neurons has variable effects on BP. A depressor response was produced during optogenetic stimulation of NTSPNMT neurons projecting to the paraventricular nucleus of the hypothalamus, lateral parabrachial nucleus, and caudal ventrolateral medulla. Conversely, photostimulation of NTSPNMT neurons projecting to the rostral ventrolateral medulla produced a robust pressor response and bradycardia. In addition, genetic ablation of both NTSPNMT neurons and those projecting to the rostral ventrolateral medulla impaired the arterial baroreflex. Overall, we revealed the neuronal phenotype- and circuit-specific mechanisms underlying the contribution of NTSPNMT neurons to the regulation of BP.
Solitary Nucleus/metabolism*
;
Blood Pressure/physiology*
;
Phenylethanolamine N-Methyltransferase/metabolism*
;
Neurons/metabolism*
;
Paraventricular Hypothalamic Nucleus/metabolism*

Result Analysis
Print
Save
E-mail