1.Bone marrow mesenchymal stem cells improve bone cancer pain by inhibiting p38MAPK phosphorylation and microglia activation
Houming KAN ; Jinzhao HUANG ; Xiaodie GUI ; Wendi TIAN ; Lijun FAN ; Xuetai CHEN ; Xiaotong DING ; Liping CHEN ; Wen SHEN
The Korean Journal of Pain 2025;38(2):116-127
Background:
Bone cancer pain (BCP) is not adequately addressed by current treatment methods, making the exploration of effective management strategies a topic of significant interest. Bone marrow mesenchymal stem cells (BMSCs) seem to be a potential way for managing BCP, yet little is known about the mechanisms underlying the efficacy of this potential treatment.
Methods:
We established the male C57BL/6 mice BCP models. Behavioral tests, X-ray, bone histology, western blotting, and immunofluorescence were used to verify the analgesic effect of BMSCs.
Results:
Intramedullary injection of Lewis lung carcinoma cells into the femur successfully generated the mice BCP models. The number of c-Fos-positive neurons and phosphorylated mitogen-activated protein kinase (MAPK) proteins in the spinal dorsal horn of the BCP mice increased. Intrathecal injection of BMSCs temporarily improved the BCP mice’s mechanical and thermal hyperalgesia without affecting motor function. This effect may be related to inhibiting spinal microglia and p-p38 MAPK activation. The analgesic effect of BMSCs may be related to the homing effect mediated by CXCR4.
Conclusions
Intrathecal injection of BMSCs can temporarily inhibit mechanical and thermal hyperalgesia in BCP mice without affecting motor function. This effect may be related to the inhibition of p-p38 protein expression and the inhibition of microglia but not to p-ERK and p-JNK.
2.Bone marrow mesenchymal stem cells improve bone cancer pain by inhibiting p38MAPK phosphorylation and microglia activation
Houming KAN ; Jinzhao HUANG ; Xiaodie GUI ; Wendi TIAN ; Lijun FAN ; Xuetai CHEN ; Xiaotong DING ; Liping CHEN ; Wen SHEN
The Korean Journal of Pain 2025;38(2):116-127
Background:
Bone cancer pain (BCP) is not adequately addressed by current treatment methods, making the exploration of effective management strategies a topic of significant interest. Bone marrow mesenchymal stem cells (BMSCs) seem to be a potential way for managing BCP, yet little is known about the mechanisms underlying the efficacy of this potential treatment.
Methods:
We established the male C57BL/6 mice BCP models. Behavioral tests, X-ray, bone histology, western blotting, and immunofluorescence were used to verify the analgesic effect of BMSCs.
Results:
Intramedullary injection of Lewis lung carcinoma cells into the femur successfully generated the mice BCP models. The number of c-Fos-positive neurons and phosphorylated mitogen-activated protein kinase (MAPK) proteins in the spinal dorsal horn of the BCP mice increased. Intrathecal injection of BMSCs temporarily improved the BCP mice’s mechanical and thermal hyperalgesia without affecting motor function. This effect may be related to inhibiting spinal microglia and p-p38 MAPK activation. The analgesic effect of BMSCs may be related to the homing effect mediated by CXCR4.
Conclusions
Intrathecal injection of BMSCs can temporarily inhibit mechanical and thermal hyperalgesia in BCP mice without affecting motor function. This effect may be related to the inhibition of p-p38 protein expression and the inhibition of microglia but not to p-ERK and p-JNK.
3.Bone marrow mesenchymal stem cells improve bone cancer pain by inhibiting p38MAPK phosphorylation and microglia activation
Houming KAN ; Jinzhao HUANG ; Xiaodie GUI ; Wendi TIAN ; Lijun FAN ; Xuetai CHEN ; Xiaotong DING ; Liping CHEN ; Wen SHEN
The Korean Journal of Pain 2025;38(2):116-127
Background:
Bone cancer pain (BCP) is not adequately addressed by current treatment methods, making the exploration of effective management strategies a topic of significant interest. Bone marrow mesenchymal stem cells (BMSCs) seem to be a potential way for managing BCP, yet little is known about the mechanisms underlying the efficacy of this potential treatment.
Methods:
We established the male C57BL/6 mice BCP models. Behavioral tests, X-ray, bone histology, western blotting, and immunofluorescence were used to verify the analgesic effect of BMSCs.
Results:
Intramedullary injection of Lewis lung carcinoma cells into the femur successfully generated the mice BCP models. The number of c-Fos-positive neurons and phosphorylated mitogen-activated protein kinase (MAPK) proteins in the spinal dorsal horn of the BCP mice increased. Intrathecal injection of BMSCs temporarily improved the BCP mice’s mechanical and thermal hyperalgesia without affecting motor function. This effect may be related to inhibiting spinal microglia and p-p38 MAPK activation. The analgesic effect of BMSCs may be related to the homing effect mediated by CXCR4.
Conclusions
Intrathecal injection of BMSCs can temporarily inhibit mechanical and thermal hyperalgesia in BCP mice without affecting motor function. This effect may be related to the inhibition of p-p38 protein expression and the inhibition of microglia but not to p-ERK and p-JNK.
4.Bone marrow mesenchymal stem cells improve bone cancer pain by inhibiting p38MAPK phosphorylation and microglia activation
Houming KAN ; Jinzhao HUANG ; Xiaodie GUI ; Wendi TIAN ; Lijun FAN ; Xuetai CHEN ; Xiaotong DING ; Liping CHEN ; Wen SHEN
The Korean Journal of Pain 2025;38(2):116-127
Background:
Bone cancer pain (BCP) is not adequately addressed by current treatment methods, making the exploration of effective management strategies a topic of significant interest. Bone marrow mesenchymal stem cells (BMSCs) seem to be a potential way for managing BCP, yet little is known about the mechanisms underlying the efficacy of this potential treatment.
Methods:
We established the male C57BL/6 mice BCP models. Behavioral tests, X-ray, bone histology, western blotting, and immunofluorescence were used to verify the analgesic effect of BMSCs.
Results:
Intramedullary injection of Lewis lung carcinoma cells into the femur successfully generated the mice BCP models. The number of c-Fos-positive neurons and phosphorylated mitogen-activated protein kinase (MAPK) proteins in the spinal dorsal horn of the BCP mice increased. Intrathecal injection of BMSCs temporarily improved the BCP mice’s mechanical and thermal hyperalgesia without affecting motor function. This effect may be related to inhibiting spinal microglia and p-p38 MAPK activation. The analgesic effect of BMSCs may be related to the homing effect mediated by CXCR4.
Conclusions
Intrathecal injection of BMSCs can temporarily inhibit mechanical and thermal hyperalgesia in BCP mice without affecting motor function. This effect may be related to the inhibition of p-p38 protein expression and the inhibition of microglia but not to p-ERK and p-JNK.
5.Bone marrow mesenchymal stem cells improve bone cancer pain by inhibiting p38MAPK phosphorylation and microglia activation
Houming KAN ; Jinzhao HUANG ; Xiaodie GUI ; Wendi TIAN ; Lijun FAN ; Xuetai CHEN ; Xiaotong DING ; Liping CHEN ; Wen SHEN
The Korean Journal of Pain 2025;38(2):116-127
Background:
Bone cancer pain (BCP) is not adequately addressed by current treatment methods, making the exploration of effective management strategies a topic of significant interest. Bone marrow mesenchymal stem cells (BMSCs) seem to be a potential way for managing BCP, yet little is known about the mechanisms underlying the efficacy of this potential treatment.
Methods:
We established the male C57BL/6 mice BCP models. Behavioral tests, X-ray, bone histology, western blotting, and immunofluorescence were used to verify the analgesic effect of BMSCs.
Results:
Intramedullary injection of Lewis lung carcinoma cells into the femur successfully generated the mice BCP models. The number of c-Fos-positive neurons and phosphorylated mitogen-activated protein kinase (MAPK) proteins in the spinal dorsal horn of the BCP mice increased. Intrathecal injection of BMSCs temporarily improved the BCP mice’s mechanical and thermal hyperalgesia without affecting motor function. This effect may be related to inhibiting spinal microglia and p-p38 MAPK activation. The analgesic effect of BMSCs may be related to the homing effect mediated by CXCR4.
Conclusions
Intrathecal injection of BMSCs can temporarily inhibit mechanical and thermal hyperalgesia in BCP mice without affecting motor function. This effect may be related to the inhibition of p-p38 protein expression and the inhibition of microglia but not to p-ERK and p-JNK.
6.Trilogy of drug repurposing for developing cancer and chemotherapy-induced heart failure co-therapy agent.
Xin CHEN ; Xianggang MU ; Lele DING ; Xi WANG ; Fei MAO ; Jinlian WEI ; Qian LIU ; Yixiang XU ; Shuaishuai NI ; Lijun JIA ; Jian LI
Acta Pharmaceutica Sinica B 2024;14(2):729-750
Chemotherapy-induced complications, particularly lethal cardiovascular diseases, pose significant challenges for cancer survivors. The intertwined adverse effects, brought by cancer and its complication, further complicate anticancer therapy and lead to diminished clinical outcomes. Simple supplementation of cardioprotective agents falls short in addressing these challenges. Developing bi-functional co-therapy agents provided another potential solution to consolidate the chemotherapy and reduce cardiac events simultaneously. Drug repurposing was naturally endowed with co-therapeutic potential of two indications, implying a unique chance in the development of bi-functional agents. Herein, we further proposed a novel "trilogy of drug repurposing" strategy that comprises function-based, target-focused, and scaffold-driven repurposing approaches, aiming to systematically elucidate the advantages of repurposed drugs in rationally developing bi-functional agent. Through function-based repurposing, a cardioprotective agent, carvedilol (CAR), was identified as a potential neddylation inhibitor to suppress lung cancer growth. Employing target-focused SAR studies and scaffold-driven drug design, we synthesized 44 CAR derivatives to achieve a balance between anticancer and cardioprotection. Remarkably, optimal derivative 43 displayed promising bi-functional effects, especially in various self-established heart failure mice models with and without tumor-bearing. Collectively, the present study validated the practicability of the "trilogy of drug repurposing" strategy in the development of bi-functional co-therapy agents.
7.Acute effects of air pollution on pulmonary function and exhaled nitric oxide in children in Shanghai
Jianhui GAO ; Yuhong WANG ; Yichen DING ; Lisha SHI ; Dong XU ; Limin LING ; Li PENG ; Lijun ZHANG
Shanghai Journal of Preventive Medicine 2024;36(3):241-248
ObjectiveTo investigate the acute effects of compound air pollution on children’s respiratory function. MethodsUsing panel group study design, 223 students in five classes of grade 4 from two primary schools (a, b) in Xuhui and Hongkou districts of Shanghai were randomly selected to measure pulmonary function and exhaled nitric oxide (FeNO). The first three tests were carried out from May to June in 2020, and the fourth test was carried out from September to December in 2021. At the same time, the daily and hourly mean values of PM2.5, PM10, SO2, NO2, O3 and CO was collected from the nearby air quality monitoring points of the two schools during the same period , as well as meteorological monitoring data (temperature, humidity, wind speed and atmospheric pressure). The linear mixed effect model was used to analyze the effects of air pollution on pulmonary function and respiratory inflammation in the summer. ResultsThe results of single pollutant model showed that PM2.5, PM10, SO2 and NO2 were positively correlated with FeNO, and the effect was reflected in lag0, lag1 and lag3 (P<0.05). PM2.5, PM10 and NO2 were negatively correlated with the changes of lung function FEF25%, FEF50%, FEF75%, FeF25%-75%, PEF, FVC, FEV1 and FEV1/FVC, and the effect was reflected in lag0 to lag3 days (P<0.05). The results of the dual pollutant model showed that the concentration changes of SO2 and NO2 were significantly correlated with the decrease of FEV1 when combined with O3 or PM2.5 (P<0.01), and the concentration changes of PM2.5 was significantly correlated with the increase of FeNO when O3, SO2 and NO2 were combined respectively (P<0.01). The effects of the dual pollutant model were greater than the effect of PM2.5 single pollutant model. ConclusionThe health effects of different air pollutants on children’s respiratory tract function indexes in summer are different. The combined effects of two pollutants on the lung function of children increased to different degrees. Although air pollution is light in summer, it still has an impact on children’s respiratory tract function index and inflammation index, and the combined effect of dual pollutants is more significant than that of single pollutant.
8.Biomechanical characteristics of ligament injury affecting lumbar spine stability
Yinqian LI ; Jie LYU ; Lijun DING ; Duoduo WANG ; Panjing GUO ; Jinfeng CAO ; Nan ZHOU ; Qiang LYU
Chinese Journal of Tissue Engineering Research 2024;28(21):3286-3292
BACKGROUND:Ligaments are important structures in maintaining the stability of the lumbar spine,and these structures are prone to degradation due to the generated mechanical stress.However,there are few studies on ligament injuries. OBJECTIVE:To determine the range of motion and stress of each ligament in the state of motion based on a three-dimensional finite element model,and to systematically explore the influence of ligament injury on the stability of the lumbar spine and its biomechanical significance. METHODS:The L4-L5 lumbar finite element model was established.All free forces on the lower surface of L5 were constrained,and a torque of 5 N·m was applied to simulate the motion states of the lumbar spine.Progressive ligament damage was simulated by changing Young's modulus of the ligament. RESULTS AND CONCLUSION:(1)The extension range of motion of most ligament injuries increased significantly.In contrast,there was no significant change in the lateral bending range of motion.(2)The range of motion of capsular ligament injury increased significantly in flexion,extension and lateral bending.The extension range of motion increased significantly after the anterior longitudinal ligament injury.Intertransverse ligament injury resulted in a significant increase in the lateral bending range of motion.(3)After a single ligament injury,the most significant change in range of motion was observed during extension.After a single ligament injury,the stress of the remaining ligaments increased,especially the capsular ligament.The stress changes of the interspinous ligament and ligamentum flavum were the least obvious.Ligament stress changes least in lateral bending and most in torsion.(4)Ligament damage did not result in major changes in disc pressure,indicating that ligament injury leads to an increased range of motion of the lumbar spine and affects the stability of the lumbar spine.(5)Capsular ligament was stable in flexion,extension and lateral bending.The anterior longitudinal ligament showed a stable extension;the intertransverse ligament stabilizes the lateral curve.(6)Extension exercise is sensitive to a ligament injury,and the pathological changes of the ligament can be examined by extension exercise.(7)Stress compensation was given to the remaining ligaments to maintain the stability of the lumbar spine after a single ligament injury.(8)Interspinous ligament and ligamentum flavum injuries have the least impact on the peripheral ligaments,while capsular ligament injuries have the greatest impact on the peripheral ligaments.(9)The ligament injury has the least effect on the residual ligament stress during lateral bending exercise,while it has the greatest effect on the ligament stress during the twisting exercise.Patients with ligament injury should avoid twisting exercises.Ligament injuries do not affect disc pressure.
9.Effect of total ligament superimposed injury on biomechanical characteristics of the lumbar spine
Duoduo WANG ; Jie LYU ; Panjing GUO ; Lijun DING ; Jinfeng CAO ; Nan ZHOU ; Qiang LYU
Chinese Journal of Tissue Engineering Research 2024;33(33):5249-5256
BACKGROUND:Ligaments are an important structure for stabilizing the lumbar spine,and they are prone to degenerative changes with age.Currently,there is limited research on lumbar ligaments. OBJECTIVE:To investigate the effect of different combinations of ligament injuries on biomechanical characteristics of lumbar spine under four motion states of forward bending,backward extension,lateral bending,and torsion under a certain sequence of ligament injuries. METHODS:A finite element model of the L4-L5 segment of the lumbar spine was established,and corresponding moments were applied to simulate four motion states of forward bending,backward extension,lateral bending,and torsion.The combined injuries of the ligaments were performed in order to obtain the motion range of each vertebra and the stress of each ligament. RESULTS AND CONCLUSION:(1)Every time a ligament was removed,the remaining ligament stress would increase.Under all four working conditions,capsular ligament would experience the highest stress,especially during forward bending.With the removal of ligaments,the range of motion of the vertebrae was also continuously increasing.(2)When flexing forward,after removing the first ligament capsular ligament,the average stress change in the remaining ligament was the highest,followed by the removal of supraspinous ligament.After removing capsular ligament,the change rate of range of motion was the highest,while after removing posterior longitudinal ligament,the change rate of range of motion was the lowest.(3)When extending backward,all ligaments had the highest rate of stress change after removing capsular ligament,the highest rate of range of motion change after removing capsular ligament,and the lowest rate of range of motion change after removing posterior longitudinal ligament.(4)When bending,the stress change rate of interspinous ligament decreased after removing intertransverse ligament,while supraspinous ligament increased more.After removing capsular ligament and interspinous ligament,the range of motion change rate increased significantly.(5)During lateral bending,after removing capsular ligament,the stress change rate of the remaining ligament was much higher than that of other ligament damage combinations,and the range of motion change rate was the highest after removing capsular ligament.In other cases,the range of motion change rate did not exceed 8%.(6)If the root ligament is damaged,the remaining ligaments will undergo stress compensation.Ligament damage will affect the stability of the lumbar spine,with minimal impact in cases of lateral curvature.Patients with lumbar instability should avoid forward flexion and backward extension movements,which can make it easier to detect the pathological condition of the ligaments.(7)Capsular ligament is an important structure for maintaining lumbar stability,and supraspinous ligament plays a significant role in anterior flexion,maintaining the integrity of the entire lumbar ligament.
10.Circular RNAs are involved in the pathogenesis of osteoarthritis through intracellular mechanisms
Lijun ZHOU ; Keyuan ZHANG ; Xi WANG ; Li YU ; Feihu XU ; Hong DING ; Hairong MA
Chinese Journal of Tissue Engineering Research 2024;28(35):5716-5722
BACKGROUND:Currently,there is no drug that can completely cure osteoarthritis and its pathogenesis is still unclear.Circular RNAs(circRNAs)are differentially expressed in patients with osteoarthritis and are closely associated with various pathological processes in osteoarthritis.circRNAs play an important role in various physiological and pathological processes,such as chondrocyte homeostasis,extracellular matrix formation,and inflammatory response. OBJECTIVE:To mainly review the effects of circRNAs on pathological factors related to osteoarthritis,as well as the types and expression levels of circRNAs in osteoarthritis. METHODS:Related articles published from 1976 to August 2023 were retrieved from CNKI,WanFang,VIP,PubMed,Medline,Web of Science and Elsevier databases.The keywords were"osteoarthritis,circular RNA,non-coding RNA,synovial tissue,chondrocytes"in Chinese and English,respectively.All the relevant articles were screened,summarized,analyzed,and finally 69 papers were included in the review. RESULTS AND CONCLUSION:circRNAs are non-coding RNAs widely found in eukaryotic cells,with covalently closed continuous loop structure,but with no 5'hat structure and 3'poly A tail,which are involved in multi-gene and multi-target regulatory networks and cannot be degraded by nucleic acid exonucleases(RNase R).circRNAs have a high abundance,high conservativeness and stability,and cell and tissue specificity.circRNAs have biological functions such as acting as molecular sponges for miRNAs,regulating linear RNA transcription and RNA shearing,interacting with RNA-bound proteins,and translating proteins.circRNAs regulate chondrocyte apoptosis and proliferation,degradation of cartilage extracellular matrix,and inflammation and other physiopathologic processes.circRNAs are expected to become biomarkers and potential therapeutic targets for clinical diagnosis and prognosis of osteoarthritis,and may become a new strategy for clinical treatment of osteoarthritis in the future.

Result Analysis
Print
Save
E-mail