1.Percutaneous coronary intervention vs . medical therapy in patients on dialysis with coronary artery disease in China.
Enmin XIE ; Yaxin WU ; Zixiang YE ; Yong HE ; Hesong ZENG ; Jianfang LUO ; Mulei CHEN ; Wenyue PANG ; Yanmin XU ; Chuanyu GAO ; Xiaogang GUO ; Lin CAI ; Qingwei JI ; Yining YANG ; Di WU ; Yiqiang YUAN ; Jing WAN ; Yuliang MA ; Jun ZHANG ; Zhimin DU ; Qing YANG ; Jinsong CHENG ; Chunhua DING ; Xiang MA ; Chunlin YIN ; Zeyuan FAN ; Qiang TANG ; Yue LI ; Lihua SUN ; Chengzhi LU ; Jufang CHI ; Zhuhua YAO ; Yanxiang GAO ; Changan YU ; Jingyi REN ; Jingang ZHENG
Chinese Medical Journal 2025;138(3):301-310
BACKGROUND:
The available evidence regarding the benefits of percutaneous coronary intervention (PCI) on patients receiving dialysis with coronary artery disease (CAD) is limited and inconsistent. This study aimed to evaluate the association between PCI and clinical outcomes as compared with medical therapy alone in patients undergoing dialysis with CAD in China.
METHODS:
This multicenter, retrospective study was conducted in 30 tertiary medical centers across 12 provinces in China from January 2015 to June 2021 to include patients on dialysis with CAD. The primary outcome was major adverse cardiovascular events (MACE), defined as a composite of cardiovascular death, non-fatal myocardial infarction, and non-fatal stroke. Secondary outcomes included all-cause death, the individual components of MACE, and Bleeding Academic Research Consortium criteria types 2, 3, or 5 bleeding. Multivariable Cox proportional hazard models were used to assess the association between PCI and outcomes. Inverse probability of treatment weighting (IPTW) and propensity score matching (PSM) were performed to account for potential between-group differences.
RESULTS:
Of the 1146 patients on dialysis with significant CAD, 821 (71.6%) underwent PCI. After a median follow-up of 23.0 months, PCI was associated with a 43.0% significantly lower risk for MACE (33.9% [ n = 278] vs . 43.7% [ n = 142]; adjusted hazards ratio 0.57, 95% confidence interval 0.45-0.71), along with a slightly increased risk for bleeding outcomes that did not reach statistical significance (11.1% vs . 8.3%; adjusted hazards ratio 1.31, 95% confidence interval, 0.82-2.11). Furthermore, PCI was associated with a significant reduction in all-cause and cardiovascular mortalities. Subgroup analysis did not modify the association of PCI with patient outcomes. These primary findings were consistent across IPTW, PSM, and competing risk analyses.
CONCLUSION
This study indicated that PCI in patients on dialysis with CAD was significantly associated with lower MACE and mortality when comparing with those with medical therapy alone, albeit with a slightly increased risk for bleeding events that did not reach statistical significance.
Humans
;
Percutaneous Coronary Intervention/methods*
;
Male
;
Female
;
Coronary Artery Disease/drug therapy*
;
Retrospective Studies
;
Renal Dialysis/methods*
;
Middle Aged
;
Aged
;
China
;
Proportional Hazards Models
;
Treatment Outcome
2.Impact of Onset-to-Door Time on Endovascular Therapy for Basilar Artery Occlusion
Tianlong LIU ; Chunrong TAO ; Zhongjun CHEN ; Lihua XU ; Yuyou ZHU ; Rui LI ; Jun SUN ; Li WANG ; Chao ZHANG ; Jianlong SONG ; Xiaozhong JING ; Adnan I. QURESHI ; Mohamad ABDALKADER ; Thanh N. NGUYEN ; Raul G. NOGUEIRA ; Jeffrey L. SAVER ; Wei HU
Journal of Stroke 2025;27(1):140-143
3.Impact of Onset-to-Door Time on Endovascular Therapy for Basilar Artery Occlusion
Tianlong LIU ; Chunrong TAO ; Zhongjun CHEN ; Lihua XU ; Yuyou ZHU ; Rui LI ; Jun SUN ; Li WANG ; Chao ZHANG ; Jianlong SONG ; Xiaozhong JING ; Adnan I. QURESHI ; Mohamad ABDALKADER ; Thanh N. NGUYEN ; Raul G. NOGUEIRA ; Jeffrey L. SAVER ; Wei HU
Journal of Stroke 2025;27(1):140-143
4.Impact of Onset-to-Door Time on Endovascular Therapy for Basilar Artery Occlusion
Tianlong LIU ; Chunrong TAO ; Zhongjun CHEN ; Lihua XU ; Yuyou ZHU ; Rui LI ; Jun SUN ; Li WANG ; Chao ZHANG ; Jianlong SONG ; Xiaozhong JING ; Adnan I. QURESHI ; Mohamad ABDALKADER ; Thanh N. NGUYEN ; Raul G. NOGUEIRA ; Jeffrey L. SAVER ; Wei HU
Journal of Stroke 2025;27(1):140-143
5.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
6.Real-world efficacy and safety of azvudine in hospitalized older patients with COVID-19 during the omicron wave in China: A retrospective cohort study.
Yuanchao ZHU ; Fei ZHAO ; Yubing ZHU ; Xingang LI ; Deshi DONG ; Bolin ZHU ; Jianchun LI ; Xin HU ; Zinan ZHAO ; Wenfeng XU ; Yang JV ; Dandan WANG ; Yingming ZHENG ; Yiwen DONG ; Lu LI ; Shilei YANG ; Zhiyuan TENG ; Ling LU ; Jingwei ZHU ; Linzhe DU ; Yunxin LIU ; Lechuan JIA ; Qiujv ZHANG ; Hui MA ; Ana ZHAO ; Hongliu JIANG ; Xin XU ; Jinli WANG ; Xuping QIAN ; Wei ZHANG ; Tingting ZHENG ; Chunxia YANG ; Xuguang CHEN ; Kun LIU ; Huanhuan JIANG ; Dongxiang QU ; Jia SONG ; Hua CHENG ; Wenfang SUN ; Hanqiu ZHAN ; Xiao LI ; Yafeng WANG ; Aixia WANG ; Li LIU ; Lihua YANG ; Nan ZHANG ; Shumin CHEN ; Jingjing MA ; Wei LIU ; Xiaoxiang DU ; Meiqin ZHENG ; Liyan WAN ; Guangqing DU ; Hangmei LIU ; Pengfei JIN
Acta Pharmaceutica Sinica B 2025;15(1):123-132
Debates persist regarding the efficacy and safety of azvudine, particularly its real-world outcomes. This study involved patients aged ≥60 years who were admitted to 25 hospitals in mainland China with confirmed SARS-CoV-2 infection between December 1, 2022, and February 28, 2023. Efficacy outcomes were all-cause mortality during hospitalization, the proportion of patients discharged with recovery, time to nucleic acid-negative conversion (T NANC), time to symptom improvement (T SI), and time of hospital stay (T HS). Safety was also assessed. Among the 5884 participants identified, 1999 received azvudine, and 1999 matched controls were included after exclusion and propensity score matching. Azvudine recipients exhibited lower all-cause mortality compared with controls in the overall population (13.3% vs. 17.1%, RR, 0.78; 95% CI, 0.67-0.90; P = 0.001) and in the severe subgroup (25.7% vs. 33.7%; RR, 0.76; 95% CI, 0.66-0.88; P < 0.001). A higher proportion of patients discharged with recovery, and a shorter T NANC were associated with azvudine recipients, especially in the severe subgroup. The incidence of adverse events in azvudine recipients was comparable to that in the control group (2.3% vs. 1.7%, P = 0.170). In conclusion, azvudine showed efficacy and safety in older patients hospitalized with COVID-19 during the SARS-CoV-2 omicron wave in China.
7.Palmitoylated SARM1 targeting P4HA1 promotes collagen deposition and myocardial fibrosis: A new target for anti-myocardial fibrosis.
Xuewen YANG ; Yanwei ZHANG ; Xiaoping LENG ; Yanying WANG ; Manyu GONG ; Dongping LIU ; Haodong LI ; Zhiyuan DU ; Zhuo WANG ; Lina XUAN ; Ting ZHANG ; Han SUN ; Xiyang ZHANG ; Jie LIU ; Tong LIU ; Tiantian GONG ; Zhengyang LI ; Shengqi LIANG ; Lihua SUN ; Lei JIAO ; Baofeng YANG ; Ying ZHANG
Acta Pharmaceutica Sinica B 2025;15(9):4789-4806
Myocardial fibrosis is a serious cause of heart failure and even sudden cardiac death. However, the mechanisms underlying myocardial ischemia-induced cardiac fibrosis remain unclear. Here, we identified that the expression of sterile alpha and TIR motif containing 1 (SARM1), was increased significantly in the ischemic cardiomyopathy patients, dilated cardiomyopathy patients (GSE116250) and fibrotic heart tissues of mice. Additionally, inhibition or knockdown of SARM1 can improve myocardial fibrosis and cardiac function of myocardial infarction (MI) mice. Moreover, SARM1 fibroblasts-specific knock-in mice had increased deposition of extracellular matrix and impaired cardiac function. Mechanically, elevated expression of SARM1 promotes the deposition of extracellular matrix by directly modulating P4HA1. Notably, by using the Click-iT reaction, we identified that the increased expression of ZDHHC17 promotes the palmitoylation levels of SARM1, thereby accelerating the fibrosis process. Based on the fibrosis-promoting effect of SARM1, we screened several drugs with anti-myocardial fibrosis activity. In conclusion, we have unveiled that palmitoylated SARM1 targeting P4HA1 promotes collagen deposition and myocardial fibrosis. Inhibition of SARM1 is a potential strategy for the treatment of myocardial fibrosis. The sites where SARM1 interacts with P4HA1 and the palmitoylation modification sites of SARM1 may be the active targets for anti-fibrosis drugs.
8.A novel feedback loop: CELF1/circ-CELF1/BRPF3/KAT7 in cardiac fibrosis.
Yuan JIANG ; Bowen ZHANG ; Bo ZHANG ; Xinhua SONG ; Xiangyu WANG ; Wei ZENG ; Liyang ZUO ; Xinqi LIU ; Zheng DONG ; Wenzheng CHENG ; Yang QIAO ; Saidi JIN ; Dongni JI ; Xiaofei GUO ; Rong ZHANG ; Xieyang GONG ; Lihua SUN ; Lina XUAN ; Berezhnova Tatjana ALEXANDROVNA ; Xiaoxiang GUAN ; Mingyu ZHANG ; Baofeng YANG ; Chaoqian XU
Acta Pharmaceutica Sinica B 2025;15(10):5192-5211
Cardiac fibrosis is characterized by an elevated amount of extracellular matrix (ECM) within the heart. However, the persistence of cardiac fibrosis ultimately diminishes contractility and precipitates cardiac dysfunction. Circular RNAs (circRNAs) are emerging as important regulators of cardiac fibrosis. Here, we elucidate the functional role of a specific circular RNA CELF1 in cardiac fibrosis and delineate a novel feedback loop mechanism. Functionally, circ-CELF1 was involved in enhancing fibrosis-related markers' expression and promoting the proliferation of cardiac fibroblasts (CFs), thereby exacerbating cardiac fibrosis. Mechanistically, circ-CELF1 reduced the ubiquitination-degradation rate of BRPF3, leading to an elevation of BRPF3 protein levels. Additionally, BRPF3 acted as a modular scaffold for the recruitment of histone acetyltransferase KAT7 to facilitate the induction of H3K14 acetylation within the promoters of the Celf1 gene. Thus, the transcription of Celf1 was dramatically activated, thereby inhibiting the subsequent response of their downstream target gene Smad7 expression to promote cardiac fibrosis. Moreover, Celf1 further promoted Celf1 pre-mRNA transcription and back-splicing, thereby establishing a feedback loop for circ-CELF1 production. Consequently, a novel feedback loop involving CELF1/circ-CELF1/BRPF3/KAT7 was established, suggesting that circ-CELF1 may serve as a potential novel therapeutic target for cardiac fibrosis.
9.Process parameter optimization and immunogenicity evaluation of calcium phosphate-coated foot-and-mouth disease virus-like particles.
Lihua REN ; Wei GUO ; Qianqian XIE ; Ruipeng LIU ; Shiqi SUN ; Hu DONG ; Yun ZHANG ; Manyuan BAI ; Huichen GUO ; Zhidong TENG
Chinese Journal of Biotechnology 2025;41(7):2672-2681
Bio-mineralization has emerged as a promising strategy to enhance vaccine immunogenicity. This study optimized the calcium phosphate (CaP) mineralization process of foot-and-mouth disease virus-like particles (FMD VLPs) to achieve high mineralization efficiency and scalability. Key parameters, including concentrations of Ca2+, HPO42-, NaCl, and VLPs, as well as stirring speed, were systematically optimized. Stability of the scaled-up reaction system and immunogenicity of the mineralized vaccine were evaluated. Optimal conditions [25.50 mmol/L Ca(NO3)2, 15 mmol/L Na2HPO4, 300 mmol/L NaCl, 0.75 mg/mL VLPs, and 1 500 r/min] yielded CaP-mineralized VLPs (VLPs-CaP) with high mineralization efficiency, uniform morphology, and a favorable particle size. Scaling up the reaction by 25 folds maintained consistent mineralization efficiency and particle characteristics. Immunization in mice demonstrated that VLPs-CaP induced higher titers of specific antibodies and neutralizing antibodies than unmineralized VLPs (P < 0.05). Higher IgG2a/IgG1 ratio and enhanced IFN-γ secretion (P < 0.05) further indicated robust cellular immune responses. We establish a stable and scalable protocol for VLPs-CaP, providing a theoretical and technical foundation for developing high-efficacy VLPs-CaP vaccines.
Vaccines, Virus-Like Particle/immunology*
;
Immunogenicity, Vaccine
;
Calcium Phosphates/chemistry*
;
Foot-and-Mouth Disease Virus
;
Biomineralization
;
Particle Size
;
Animals
;
Mice
;
Antibodies, Neutralizing/blood*
;
Antibodies, Viral/blood*
;
Immunity, Cellular
10.Metabolic profiling analysis of acute renal toxicity in mice exposed to perfluorobutanoic acid
Lin ZHONG ; Yiru QIN ; Zhiming HU ; Zuofei XIE ; Jingjing QIU ; Banghua WU ; LiHua XIA
China Occupational Medicine 2025;52(4):368-375
Objective To explore the nephrotoxic effects of exposure to perfluorobutanoic acid (PFBA) and its mechanism in mice, with a particular focus on analyzing the changes in kidney metabolism and their potential implications. Methods The specific pathogen free C57BL/6 mice were randomly divided into control group, low-dose group, and high-dose group, with 10 mice in each group. Mice in the three groups received intragastric administration of PFBA solution at doses of 0, 35 and 350 mg/kg body weight, once per day for seven consecutive days. The histopathological changes of kidneys of mice in these three groups were evaluated. Metabolomic profiling of mouse kidneys was performed using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Differentially accumulated metabolites (DAMs) were identified based on the Human Metabolome Database, and related metabolic pathways were analyzed through MetaboAnalyst 6.0 and Kyoto Encyclopedia of Genes and Genomes (KEGG). Results Histopathological analysis of kidneys showed that the renal pelvis mucosa of mice in the low-dose group presented focal mild inflammatory changes without marked structural damage, whereas mice in the high-dose group showed severe inflammation and partial destruction of renal structure. The kidney coefficient of mice in both low-dose group and the high-dose group decreased (both P<0.05), and the Paller scores of renal tissues increased (both P<0.05) compared with that in the control group. The Paller score of mouse renal tissue in the high-dose group was higher than that in the low-dose group (P<0.05). Metabolomic profiling identified 46 DAMs (26 upregulated, 20 downregulated) in the low-dose group and 104 DAMs (54 upregulated, 50 downregulated) in the high-dose group, with 26 shared DAMs between the two dose groups. KEGG pathway analysis revealed that DAMs were mainly involved in metabolic pathways such as glycerophospholipid metabolism, glycerolipid metabolism, sphingolipid and steroid hormone synthesis. Conclusion Acute exposure to PFBA can cause kidney injury in mice. Lipid metabolism pathways such as glycerophospholipid and sphingolipid metabolism is involved in the development of acute renal toxicity of PFBA.

Result Analysis
Print
Save
E-mail