1.Chemical components of Magnoliae Officinalis Cortex of different origins and with different tree ages before and after being processed with ginger juice:a qualitative and quantitative analysis.
Jia-Qi LI ; Zhen-Zhen XUE ; Bin YANG
China Journal of Chinese Materia Medica 2023;48(9):2435-2454
This study aimed to investigate the impact of ginger juice on chemical profile of Magnoliae Officinalis Cortex(MOC) when they were processed together. Ultra-high-performance liquid chromatography coupled to quadrupole-orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was used for qualitative analysis of the chemical component of MOC samples before and after being processed with ginger juice. UPLC was performed to observe the content variation of eight main components in processed MOC. A total of 174 compounds were identified or tentatively deduced from processed and unprocessed MOC samples according to MS data obtained in positive and negative ion mode. After MOC was processed with ginger juice, the peak areas of most phenolics increased, while the peak areas of most phenylethanoid glycosides decreased; as for neolignans, oxyneolignans, other lignans and alkaloids, changes in the peak area were variable, and the peak areas of terpenoid-lignans varied little. Additionally, gingerols and diarylheptanoids were only detected in the processed MOC sample. The contents of syringin, magnoloside A, and magnoloside B decreased significantly in the processed MOC sample while no significant difference was observed in the contents of magnoflorine, magnocurarine, honokiol, obovatol, and magnolol. This study comprehensively explored the content variation of chemical components in processed and unprocessed MOC samples derived from different regions and with different tree ages using UPLC and UHPLC-Q-Orbitrap HRMS, and summarized the variation characteristics of various compounds. The results provide a data foundation for further research on pharmacodynamic substances of MOC processed with ginger juice.
Ginger
;
Trees
;
Chromatography, High Pressure Liquid/methods*
;
Alkaloids
;
Lignans/analysis*
2.Lignans from stems and leaves of Cephalotaxus fortunei (Ⅱ).
Jia-Mei TIAN ; Yi-Zhen YUAN ; Jing-Li WANG ; Da-Hong LI ; Jiao BAI ; Hui-Ming HUA
China Journal of Chinese Materia Medica 2023;48(7):1892-1898
The present study aimed to explore the chemical constituents from the stems and leaves of Cephalotaxus fortunei. Seven lignans were isolated from the 75% ethanol extract of C. fortunei by various chromatographic methods, including silica gel, ODS column chromatography, and HPLC. The structures of the isolated compounds were elucidated according to physicochemical properties and spectral data. Compound 1 is a new lignan named cephalignan A. The known compounds were identified as 8-hydroxy-conidendrine(2), isolariciresinol(3), leptolepisol D(4), diarctigenin(5), dihydrodehydrodiconiferyl alcohol 9'-O-β-D-glucopyranoside(6), and dihydrodehydrodiconiferyl alcohol 4-O-β-D-glucopyranoside(7). Compounds 2 and 5 were isolated from the Cephalotaxus plant for the first time.
Cephalotaxus
;
Lignans/analysis*
;
Plant Leaves/chemistry*
;
Ethanol
;
Chromatography, High Pressure Liquid
3.Identification and characterization of DIR gene family in Schisandra chinensis.
Yu-Qing DONG ; Ting-Yan QIANG ; Jiu-Shi LIU ; Bin LI ; Xue-Ping WEI ; Yao-Dong QI ; Hai-Tao LIU ; Ben-Gang ZHANG
China Journal of Chinese Materia Medica 2021;46(20):5270-5277
Dirigent(DIR) proteins are involved in the biosynthesis of lignin, lignans, and gossypol in plants and respond to biotic and abiotic stresses. Based on the full-length transcriptome of Schisandra chinensis, bioinformatics methods were used to preliminarily identify the DIR gene family and analyze the physico-chemical properties, subcellular localization, conserved motifs, phylogeny, and expression patterns of the proteins. The results showed that a total of 34 DIR genes were screened and the encoded proteins were 156-387 aa. The physico-chemical properties of the proteins were different and the secondary structure was mainly random coil. Half of the DIR proteins were located in chloroplast, while the others in extracellular region, endoplasmic reticulum, cytoplasm, etc. Phylogenetic analysis of DIR proteins from S. chinensis and the other 8 species such as Arabidopsis thaliana, Oryza sativa, and Glycine max demonstrated that all DIR proteins were clustered into 5 subfamilies and that DIR proteins from S. chinensis were in 4 subfamilies. DIR-a subfamily has the unique structure of 8 β-sheets, as verified by multiple sequence alignment. Finally, through the analysis of the transcriptome of S. chinensis fruit at different development stages, the expression pattern of DIR was clarified. Combined with the accumulation of lignans in fruits at different stages, DIR might be related to the synthesis of lignans in S. chinensis. This study lays a theoretical basis for exploring the biological functions of DIR genes and elucidating the biosynthesis pathway of lignans in S. chinensis.
Fruit/genetics*
;
Lignans/analysis*
;
Phylogeny
;
Schisandra
;
Sequence Alignment
4.Analysis of material basis of Schisandrae Chinensis Fructus in different growth stages based on chromatography.
Ming-Jie SONG ; Xuan TENG ; Chang LIU ; Zhi-Man LI ; Yin-Shi SUN
China Journal of Chinese Materia Medica 2021;46(9):2245-2253
Schisandrae Chinensis Fructus in six growth stages was taken as materials to study the species and content changes of material basis, which were detected by UPLC, GC and MS chromatography, including lignans, nucleosides, aroma components and fatty acids. The results showed that the texture, color and taste of Schisandrae Chinensis Fructus in six growth stages were different. On the material basis, 12 lignans were detected by UPLC-MS, and the content of total lignans was higher in the samples from late August to early September, among which the highest content of schisandrin was 0.67%±0.01%, followed by schizandrol B, angeloylgomisin H and schisandrin B, and the total content increased with the maturity of Schisandrae Chinensis Fructus. Thirteen kinds of nucleosides were detected by UPLC. The total nucleoside content was the highest in late July samples, in which the contents of uridine and guanosine were higher and decreased after maturity. Aroma components and fatty acids were identified by GC-MS. A total of 53 aroma components were detected and the highest total content was appeared in late August samples, of which ylangene was higher and bergamotene was followed. A total of 24 kinds of fatty acids were detected. The fruits matured basically in August, and the content of fatty acids in the samples was the highest, among which linoleic acid content was top the list and oleic acid was the second. To sum up, the maturity of Schisandra chinensis fruit is related to the content and variety of various material bases, and the growth period has different influences on the quality of Schisandrae Chinensis Fructus. Therefore, the appropriate harvesting time should be determined according to the change law of target components. The results of this study can provide reference for the quality evaluation of Schisandrae Chinensis Fructus material basis.
Chromatography, Liquid
;
Drugs, Chinese Herbal
;
Fruit/chemistry*
;
Lignans/analysis*
;
Schisandra
;
Tandem Mass Spectrometry
5.Research progress in application and mechanism of Schisandrae Chinensis Fructus for prevention and treatment of liver diseases.
Wen ZHANG ; Ya-di ZHU ; Qi-Yao ZHANG ; Li-Juan MA ; Ling YANG ; Wen-Zhi GUO ; Guang-Bo GE
China Journal of Chinese Materia Medica 2020;45(16):3759-3769
Schisandra is the mature fruit of Schisandra chinensis(known as "north Schisandra") or S. shenanthera(known as "south Schisandra"). S. chinensis contains a variety of lignans, volatile oils, polysaccharides, organic acids and other chemical constituents; among them, lignans are recognized as the characteristic active components. Clinical studies have found that Schisandra and Schisandra-related products have a better effect in the prevention and treatment of viral hepatitis, drug-induced liver injury, liver cirrhosis, liver failure and other liver diseases. Modern pharmacological studies have demonstrated that Schisandra has a variety of pharmacological activities, such as anti-inflammation, antioxidation, anticancer, regulation of nuclear receptor, antivirus, regulation of cytochrome P450 enzyme, inhibition of liver cell apoptosis and promotion of liver regeneration. This paper reviews the studies about the applications and mechanism of Schisandra in the prevention and treatment of liver diseases, in the expectation of providing guidance for the development of hepatoprotective drugs from Schisandra and the clinical applications of Schisandra-related products.
Chemical and Drug Induced Liver Injury
;
Drugs, Chinese Herbal
;
Fruit
;
chemistry
;
Humans
;
Lignans
;
analysis
;
Protective Agents
;
Schisandra
6.Geo-herbalism study of Magnoliae Officinalis Cortex.
Zhen-Zhen XUE ; Rui-Xian ZHANG ; Bin YANG
China Journal of Chinese Materia Medica 2019;44(17):3601-3607
Magnoliae Officinalis Cortex( MOC),the stem bark of Magnolia officinalis( MO) and M. officinalis var. biloba( MOB),is a main ingredient in more than 200 types of Chinese formulae commonly used in clinics. MO and MOB are widely distributed in China,from Sichuan of the west to Zhejiang province of the east and from Shannxi province in the north to Guangxi province in the south. This review summarizes new findings on geo-heralism of MOC concerning textual research,plants taxonomy,genetic study,chemical study,and pharmacological activity,resulting in the following views. ①The original plants of MOC are suggested to be divided into three geographic clans according to the form of leave and the result of genetic research; ②Concentrations of magnolol,honokiol,magnoloside A,magnoloside B,magnoflorine,and β-eudesmol in samples collected from different geographic areas are varied;③Samples of MOC produced in Hubei and Sichuan were traditionally regarded as Dao-di herbs,which were called Chuanpo,and the pure haplotype of MOC produced in Hubei may become a genetic index.
Biphenyl Compounds
;
analysis
;
China
;
Drugs, Chinese Herbal
;
analysis
;
Lignans
;
analysis
;
Magnolia
;
chemistry
;
Phytochemicals
;
analysis
7.Rapid identification of constituents of Urtica hyperborea using UPLC-ESI-Q-TOF-MS/MS method.
Ri-Na SU ; Wei-Zao LUO ; Rong-Rui WEI ; Wu-Li-Ji AO ; Guo-Yue ZHONG
China Journal of Chinese Materia Medica 2019;44(8):1607-1614
This paper deals with the application of ultra-performance liquid chromatography tandem quadrupole time of flight mass spectrometry(UPLC-ESI-Q-TOF-MS/MS) method to rapidly determine and analyze the chemical constituents of methanol extract of Urtica hyperborea. We employed UPLC YMC-Triart C18(2. 1 mm×100 mm,1. 9 μm) column to UPLC analysis with acetonitrile-water(containing 0. 4% formic acid) in gradient as mobile phase. The flow rate was 0. 3 m L·min-1 gradient elution and column temperature was 30℃; the injection volume was 4 μL. ESI ion source was used to ensure the data collected in anegative ion mode. The chemical components of U. hyperborea were identified through retention time,exact relative molecular mass,cleavage fragments of MS/MS and reported data.The results indicated that a total of 31 compounds were identified,including 8 flavonoids,14 phenolic compounds,8 phenylpropanoids(4 coumarins and 4 lignans),and 1 steroidal compound,13 of which were confirmed by comparison. The UPLC-ESI-Q-TOF-MS/MS method could rapid identify the chemical components of U. hyperborea. The above compounds were discovered in U. hyperborea for the first time,which could provide theoretical foundation for further research on the basis of the pharmacodynamics of U. hyperborea.
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal
;
chemistry
;
Flavonoids
;
Lignans
;
Phenols
;
Phytochemicals
;
analysis
;
Plant Extracts
;
analysis
;
Tandem Mass Spectrometry
;
Urticaceae
;
chemistry
8.Lignans from seed of Hydnocarpus anthelminthica.
Rui-Lan LIANG ; Guo-Ru SHI ; Shi-Shan YU
China Journal of Chinese Materia Medica 2019;44(7):1397-1402
This project is to investigate lignans from the seed of Hydnocarpus anthelminthica. Thirteen lignans were isolated from the 95% ethanol extract of the seed of H. anthelminthica, by polyamide resin, Sephadex LH-20, ODS column chromatography and preparative HPLC. Their structures were elucidated as(+)-syringaresinol(1), lirioresinol A(2),(+)-medioresinol(3),(7R,8R,8'R)-4'-guaiacylglyceryl-evofolin B(4), leptolepisol C(5),(-)-(7R,7'R,7″R,8S,8'S,8″S)-4',4″-dihydroxy-3,3',3″,5,5',5″-hexamethoxy-7,9':7',9-diepoxy-4,8″-oxy-8,8'-sesquineolignan-7″,9″-diol(6),(-)-(7R,7'R,7″R,8S,8'S,8″S)-4',4″-dihydroxy-3,3',3″,5,5'-pentamethoxy-7,9':7',9-diepoxy-4,8″-oxy-8,8'ses-quineolignan-7″,9″-diol(7), ceplignan(8), hydnocarpusol(9), isohydnocarpin(10),(-)-hydnocarpin(11), hydnocarpin(12), and hydnocarpin-D(13) by spectroscopic data analysis. Compounds 1-8 were obtained from the genus Hydnocarpus for the first time.
Lignans
;
analysis
;
Magnoliopsida
;
chemistry
;
Molecular Structure
;
Phytochemicals
;
analysis
;
Plant Extracts
;
analysis
;
Seeds
;
chemistry
9.Identification of chemical constituents in Sinopodophylli Fructus by HPLC-DAD-ESI-IT-TOF-MSn.
Ai-Hua WANG ; Li-Man MA ; Shan-Shan FAN ; Guang-Xue LIU ; Feng XU ; Ming-Ying SHANG ; Shao-Qing CAI
China Journal of Chinese Materia Medica 2018;43(1):123-133
This experiment was performed to analyze and identify the chemical constituents of Sinopodophylli Fructus by HPLC-DAD-ESI-IT-TOF-MSn. The analysis was performed on an Agilent Zorbax SB-C₁₈ (4.6 mm×250 mm, 5 μm) column.The mobile phase consisted of 0.1% formic acid was used for gradient at a flow rate of 1.0 mL·min⁻¹. Electrospray ionization ion trap time-of-flight multistage mass spectrometry was applied for qualitative analysis under positive and negative ion modes. The results indicated that 54 compounds consisted of 18 lignans and 36 flavonoids from Xiaoyelian had been detected by their HRMS data, the information of literature and reference substance. Among them, 27 compounds were reported in Sinopodophylli Fructus for the first time. In conclusion, an HPLC-DAD-ESI-IT-TOF-MSn method was established to qualitative analysis of Xiaoyelian in this study, which will provide the evidence for evaluating the quality of Xiaoyelian herbs, clarifying the mechanism, and guiding the development of pharmacological active ingredients.
Berberidaceae
;
chemistry
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal
;
chemistry
;
Flavonoids
;
analysis
;
Fruit
;
chemistry
;
Lignans
;
analysis
;
Phytochemicals
;
analysis
;
Spectrometry, Mass, Electrospray Ionization
;
Tandem Mass Spectrometry
10.Chemical constituents from ethyl acetate-soluble extraction of Valeriana jatamansi.
Sheng LIN ; Peng FU ; Yun-Heng SHEN ; Ji YE ; Zhong-Xiao ZHANG ; Xian-Wen YANG ; Hui-Liang LI ; Run-Hui LIU ; Xi-Ke XU ; Wei-Dong ZHANG
China Journal of Chinese Materia Medica 2018;43(1):100-108
Application of a combination of various chromatographic techniques including column chromatography over silica gel, Sephadex LH-20, macroporous adsorbent resin, and reversed-phase HPLC, led to the isolation of 173 compounds including irdidoids, monoterpenes, sesquiterpenes, triterpenes, lignans, flavonoids, and simple aromatic derivatives from the ethyl acetate-soluble fraction of the whole plants of Valeriana jatamansi(Valerianaceae), and their structures were elucidated by spectroscopic methods including 1D, 2D NMR UV, IR, and MS techniques. Among them, 77 compounds were new. In previous reports, we have described the isolation, structure elucidation, and bioactivities of 68 new and 25 known compounds. As a consequence, we herein reported the isolation and structure elucidation of the remaining 9 new and 71 known compounds, the structure revision of valeriotriate A(8a), as well as cytotoxicity of some compounds.
Acetates
;
Chromatography, High Pressure Liquid
;
Flavonoids
;
analysis
;
Iridoids
;
analysis
;
Lignans
;
analysis
;
Molecular Structure
;
Monoterpenes
;
analysis
;
Phytochemicals
;
analysis
;
Plant Extracts
;
chemistry
;
Sesquiterpenes
;
analysis
;
Triterpenes
;
analysis
;
Valerian
;
chemistry

Result Analysis
Print
Save
E-mail