1.A new lignan glucoside from stems and branches of Rhododendron ovatum.
China Journal of Chinese Materia Medica 2023;48(2):415-420
Ten lignans were isolated from the ethanol extract of stems and branches of Rhododendron ovatum through column chromatography over silica gel, ODS, Sephadex LH-20, and MCI-gel resin and semi-preparative RP-HPLC. The structures of all compounds were elucidated by extensive spectroscopic data analysis(UV, IR, HR-ESI-MS, ECD and NMR) as(-)-4-epi-lyoniresinol-9'-O-α-L-rhamnopyranoside(1),(+)-lyoniresinol-3α-O-α-L-rhamnopyranoside(2),(+)-5'-methoxyisolariciresinol-9'-O-α-L-rhamnopyranoside(3),(-)-lyoniresinol-3α-O-β-D-glucopyranoside(4),(+)-lyoniresinol-3α-O-β-D-glucopyranoside(5),(-)-4-epi-lyoniresinol-9'-O-β-D-glucopyransoide(6), racemiside(7), neociwujiaphenol(8),(+)-syringaresinol(9), and homohesperitin(10). Among them, compound 1 was a new aryltetralin-type lignan. All the isolated lignans were tested for antioxidant activities in Fe~(2+)-cysteine induced rat liver microsomal lipid peroxidation in vitro, and compounds 8 and 9 showed antioxidant activities on the formation of malondiadehyde(MDA) in rat liver microsomes at 1×10~(-5) mol·L~(-1), with significant inhibitory rates of 75.20% and 91.12%, respectively.
Animals
;
Rats
;
Glucosides/chemistry*
;
Rhododendron
;
Antioxidants/pharmacology*
;
Lignans/chemistry*
;
Plant Stems
2.Effect of Flax lignans on apoptosis of growth plate chondrocytes in rats.
Guo-Hui LIANG ; Yan XIE ; Yun-Peng GUO ; Wei-Peng XING ; Yuan-Yuan PEI
China Journal of Orthopaedics and Traumatology 2022;35(11):1087-1094
OBJECTIVE:
To compare the effects of different concentrations of linolenin on inhibiting apoptosis of chondrocytes in the growth plate, and to screen the optimal concentration of linolenin, so as to provide theoretical support for delaying epiphyseal closure and promoting long bone growth in rats.
METHODS:
Two 4-week-old male SD rats (SPF grade) with a body mass of 80 g were selected. The growth plate cartilage of rat tibia and femur was dissected and isolated in vitro to obtain growth plate chondrocytes for culture. The chondrocytes were observed and identified by inverted phase contrast microscope and typeⅡ collagen immunofluorescence test, and then 20 ng/ml IL-1β was used to induce apoptosis of growth plate chondrocytes as model group, and added with 1, 10, 20, 40 μM linolenin as the experimental group, and 5 μM letrozole as the positive control group. The cells were cultured for 24 and 48 hours respectively. The drug promoted cell proliferation was observed by MTT method, and the drug inhibited cell apoptosis was detected by flow cytometry.
RESULTS:
Contents 1, 10, 20, 40 μM could promote cell proliferation in varying degrees, and the principle was that the drug inhibits IL-1β induced chondrocyte apoptosis in the growth plate, and the optimal concentration of drugs to inhibit apoptosis was 20 μM.
CONCLUSION
The appropriate concentration of linseed lignans can significantly inhibit the apoptosis of chondrocytes in the growth plate of rats, and the optimal drug concentration is 20 μM. It provides possibility for delayed bone closure and longer growth time to promote bone growth during development.
Male
;
Rats
;
Animals
;
Growth Plate
;
Chondrocytes
;
Flax
;
Rats, Sprague-Dawley
;
Apoptosis
;
Lignans/pharmacology*
4.Phenylpropanoids from Zanthoxylum species and their pharmacological activities: a review.
Hai-Mei YUAN ; Lu QIU ; Yu SONG ; Liang ZOU ; Long-Fei YANG ; Qiang FU
China Journal of Chinese Materia Medica 2021;46(22):5760-5772
Phenylpropanoids are one of the major chemical constituents in Zanthoxylum species. They include simple phenylpropanoids, coumarins, and lignans and possess anti-tumor, anti-inflammatory, anti-platelet aggregation, anti-bacterial, anti-viral, insecticidal, and antifeedant activities. This review summarizes the chemical constituents and pharmacological activities from the Zanthoxylum plants in hopes of providing reference for the research and application of phenylpropanoids from this genus.
Anti-Inflammatory Agents/pharmacology*
;
Coumarins/pharmacology*
;
Lignans
;
Plant Extracts
;
Zanthoxylum
5.Lignans with inhibitory effect on 5α-reductase from Urtica cannabina.
Yan CHEN ; Zi-Xian GUO ; Xiao-Bo LI ; Chen-Jie SUN ; Meng-Yue WANG
China Journal of Chinese Materia Medica 2021;46(15):3846-3852
The lignans in Urtica cannabina were isolated by preparative HPLC, silica, and ODS column chromatographies, and identified by NMR and HR-MS. The inhibitory activities on 5α-reductase were evaluated in vitro. As a result, ten secolignans,(2R,4S)-2,4-bis(3-methoxyl-4-hydroxyphenyl)-3-butoxypropanol(1), 3,4-trans-3-hydroxymethyl-4-[bis(3,4-dimethoxyphenyl)methyl] butyrolactone(2), 3,4-trans-3-hydroxymethyl-4-[(3,4-dimethoxyphenyl)(3-methoxyl-4-hydroxyphenyl)methyl] butyrolactone(3), 3,4-trans-3-hydroxymethyl-4-[bis(3-methoxyl-4-hydroxyphenyl)methyl] butyrolactone(trans urticol, 4), 3,4-trans-3-hydroxymethyl-4-[bis(3,4-dimethoxyphenyl)methyl] butyrolactone-3-O-β-D-glucopyranoside(5), 3,4-trans-3-hydroxymethyl-4-[(3,4-dimethoxyphenyl)(3-methoxyl-4-hydroxyphenyl)methyl]butyrolactone-3-O-β-D-glucopyranoside(6), 3,4-trans-3-hydroxymethyl-4-[bis(3-methoxyl-4-hydroxyphenyl)methyl]butyrolactone-3-O-β-D-glucopyranoside(trans-urticol-7-O-β-D-glucopyranoside, 7), cycloolivil-4-O-β-D-glucopyranoside(8), isolariciresinol-4'-O-β-D-glucopyranoside(9), and olivil-4'-O-β-D-glucopyranoside(10), together with a polyphenol [α-viniferin(11)], were isolated from U. cannabina for the first time. Compound 1 was a new lignan. Compound 7 was potent in inhibiting 5α-reductase.
5-alpha Reductase Inhibitors
;
Cholestenone 5 alpha-Reductase/pharmacology*
;
Chromatography, High Pressure Liquid
;
Lignans/pharmacology*
;
Magnetic Resonance Spectroscopy
;
Molecular Structure
;
Urticaceae/enzymology*
6.Honokiol: A naturally occurring lignan with pleiotropic bioactivities.
Cheng CHEN ; Qing-Wen ZHANG ; Yang YE ; Li-Gen LIN
Chinese Journal of Natural Medicines (English Ed.) 2021;19(7):481-490
Honokiol is the dominant biphenolic compound isolated from the Magnolia tree, and has long been considered as the active constituent of the traditional Chinese herb, 'Houpo', which is widely used to treat symptoms due to 'stagnation of qi'. Pharmacological studies have shown that honokiol possesses a wide range of bioactivities without obvious toxicity. Honokiol protects the liver, kidneys, nervous system, and cardiovascular system through reducing oxidative stress and relieving inflammation. Moreover, honokiol shows anti-diabetic property through enhancing insulin sensitivity, and anti-obese property through promoting browning of adipocytes. In vivo and in vitro studies indicated that honokiol functions as an anti-cancer agent through multiple mechanisms: inhibiting angiogenesis, promoting cell apoptosis, and regulating cell cycle. A variety of therapeutic effects of honokiol may be associated with its physiochemical properties, which make honokiol readily cross the blood brain barrier and the blood-cerebrospinal fluid barrier, with high bioavailability. In the future, more clinical researches on honokiol are needed to fully authenticate its therapeutic values.
Apoptosis
;
Biphenyl Compounds/pharmacology*
;
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Lignans/pharmacology*
;
Magnolia
7.New oligomeric neolignans from the leaves of Magnolia officinalis var. biloba.
Van-Tuan VU ; Xiao-Juan XU ; Kang CHEN ; Manh-Tuyen NGUYEN ; Bich-Ngoc NGUYEN ; Giang-Nam PHAM ; Ling-Yi KONG ; Jian-Guang LUO
Chinese Journal of Natural Medicines (English Ed.) 2021;19(7):491-499
Six new oligomeric neolignans including two trimeric neolignans (1 and 2) and four dimeric neolignans (3-6) were isolated from the leaves of Magnolia officinalis var. biloba. Their structures were determined based on HR-ESIMS and NMR data, as well as electronic circular dichroism (ECD) calculations. Compound 1 is formed from two obovatol moieties directly linked to an aromatic ring of the remaining obovatol moiety, which is an unprecedented type of linkage between monomers. All isolates were assessed for their inhibitory effects on NO production in LPS-stimulated RAW 264.7 macrophage cells. Compounds 1 and 3 showed significantly inhibitory activities with IC
Animals
;
Lignans/pharmacology*
;
Magnolia/chemistry*
;
Mice
;
Molecular Structure
;
Phytochemicals/pharmacology*
;
Plant Extracts/pharmacology*
;
Plant Leaves/chemistry*
;
RAW 264.7 Cells
8.Lignans with NO inhibitory activity from Tinospora sinensis.
Jun-Sheng ZHANG ; De-Feng XU ; Xin-Xin CAO ; Yin-Yin WANG ; Hua ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2021;19(7):500-504
Two new lignan glucosides, tinsinlignans A and B (1 and 2), two new oxyneolignans, tinsinlignans C and D (3 and 4), along with one known analogue (5), were isolated from the stems of Tinospora sinensis. The structures of the new compounds were elucidated based on analysis of spectroscopic data, and the absolute configuration of 1 was determined through electronic circular dichroism (ECD) calculation based on the time-dependent density functional theory (TD-DFT). Compounds 1-4 were evaluated for their inhibitory effects on nitric oxide (NO) production induced by lipopolysaccharide (LPS) in murine RAW264.7 macrophage cells and compounds 1 and 2 exhibited moderate inhibitory activities with IC
Animals
;
Glucosides/pharmacology*
;
Lignans/pharmacology*
;
Lipopolysaccharides
;
Mice
;
Molecular Structure
;
Nitric Oxide
;
Phytochemicals/pharmacology*
;
RAW 264.7 Cells
;
Tinospora/chemistry*
9.Research advances in chemical constituents and hepatoprotective effect of Schisandrae Sphenantherae Fructus and Schisandrae Chinensis Fructus.
Ming-Xiao ZHANG ; Guo-Ying HUANG ; Yu-Qi BAI ; Hua LI ; Bin YANG
China Journal of Chinese Materia Medica 2021;46(5):1017-1025
Schisandrae has a long history of medicinal use in China. Domestic and foreign scholars have isolated a variety of chemical constituents from Schisandrae Sphenantherae Fructus and Schisandrae Chinensis Fructus, including lignans, volatile oils, polysaccharides, triterpenoids, organic acids, amino acids and so on. Pharmacological studies have shown that their alcohol extracts, water extracts, lignan monomers and polysaccharides could protect liver injury and reduce enzyme ability by a variety of hepatoprotective effects such as enzyme reducing, liver protecting, and antioxidant effect. In this paper, the researches on the chemical composition, hepatoprotective effect and pharmacokinetics of Schisandrae Sphenantherae Fructus and Schisandrae Chinensis Fructus in the past forty years were systematically collated, in order to provide useful enlightenment for the clinical application and new drug development of Schisandrae Sphenantherae Fructus and Schisandrae Chinensis Fructus in liver protection.
China
;
Drugs, Chinese Herbal
;
Fruit
;
Lignans/pharmacology*
;
Schisandra
10.A new lignan from Euscaphis konishii.
Jing-Xin CHEN ; Lin NI ; Yao ZHANG ; Jia-Rui FU ; Wei HUANG ; Shuang-Quan ZOU
China Journal of Chinese Materia Medica 2021;46(8):2072-2078
The chemical constituents from the extract of the twigs of Euscaphis konishii with anti-hepatoma activity were investigated, twelve compounds by repeated chromatography with silica gel, Sephadex LH-20 and preparative-HPLC. The structures of the chemical components were elucidated by spectroscopy methods, as konilignan(1),(7R, 8S)-dihydrodehydrodico-niferylalcohol-9-O-β-D-glucopyranoside(2),illiciumlignan B(3),threo-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-panediol(4),erythro-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-panediol(5), matairesinol(6), wikstromol(7), isolariciresinol(8),(+)-lyoniresinol(9), 4-ketopinoresinol(10), syringaresin(11), and vladinol D(12). Among them, compound 1 is a new lignan. Compounds 10 and 12 had moderate inhibitory activity on HepG2 cells, with IC_(50) values of 107.12 μmol·L~(-1) and 183.56 μmol·L~(-1), respectively.
Chromatography, High Pressure Liquid
;
Lignans/pharmacology*
;
Plant Extracts/pharmacology*

Result Analysis
Print
Save
E-mail