1.Effect of acupuncture on neuronal function in the thalamic reticular nucleus of insomnia rats based on α7-nAChR.
Zhijun SHU ; Yipeng XU ; Quanyi ZHANG ; Dingjun CAI ; Zhengyu ZHAO
Chinese Acupuncture & Moxibustion 2025;45(12):1751-1758
OBJECTIVE:
To investigate the role of α7-nicotinic acetylcholine receptor (α7-nAChR) in the regulation of neuronal activity and expression of synapse-related proteins in the thalamic reticular nucleus (TRN) of insomnia rats treated by acupuncture.
METHODS:
A total of 36 male Sprague-Dawley (SD) rats of clean grade were randomly divided into a control group, a model group, an acupuncture group, and an acupuncture+antagonist group, with 9 rats in each group. The model group, the acupuncture group, and the acupuncture+antagonist group were treated with intraperitoneal injection of p-chlorophenylalanine (PCPA) to establish insomnia model. After successful modeling, the acupuncture group and the acupuncture+antagonist group received acupuncture at bilateral Neiguan (PC6) and Zusanli (ST36) once daily for 5 consecutive days. Thirty min before each acupuncture session, the acupuncture+antagonist group was intraperitoneally injected with methyllycaconitine citrate (MLA), an α7-nAChR antagonist, at a dosage of 5 mg/kg while the acupuncture group received the same volume of 0.9% sodium chloride solution. The rats' daytime spontaneous activity was observed. Neuronal discharge in the TRN was detected using neuroelectrophysiological methods. Immunofluorescence staining was used to detect parvalbumin-positive (PV+) neurons and co-expression of PV+ and postsynaptic density protein-95 (PSD-95) in the TRN.
RESULTS:
Compared with the control group, the model group showed increased daytime spontaneous activity (P<0.01); decreased average fluorescence intensity and positive number of PV+ neurons in the TRN (P<0.01); decreased neuronal discharge frequency (P<0.01), prolonged inter-discharge intervals (P<0.01) in the TRN; reduced number of PV+/PSD-95 double-positive cells in the TRN (P<0.01). Compared with the model group, the acupuncture group showed decreased daytime spontaneous activity (P<0.01); increased average fluorescence intensity and positive number of PV+ neurons in the TRN (P<0.01); increased neuronal discharge frequency (P<0.01), shortened inter-discharge intervals (P<0.01) in the TRN; increased number of PV+/PSD-95 double-positive cells in the TRN (P<0.05). Compared with the acupuncture group, the acupuncture+antagonist group exhibited increased daytime spontaneous activity (P<0.01); reduced average fluorescence intensity and positive number of PV⁺ neurons in the TRN (P<0.01); decreased neuronal discharge frequency (P<0.05), prolonged inter-discharge intervals (P<0.05) in the TRN; reduced number of PV+/PSD-95 double-positive cells in the TRN (P<0.01).
CONCLUSION
α7-nAChR are involved in mediating the regulatory effect of acupuncture on circadian rhythm disturbances in PCPA-induced insomnia rats. Blocking α7-nAChR attenuates the activating effect of acupuncture on TRN neurons, and reduces the expression of PSD-95 protein on GABAergic neurons.
Animals
;
Male
;
Acupuncture Therapy
;
alpha7 Nicotinic Acetylcholine Receptor/genetics*
;
Rats, Sprague-Dawley
;
Rats
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Neurons/metabolism*
;
Humans
;
Thalamic Nuclei/physiopathology*
;
Acupuncture Points
;
Disks Large Homolog 4 Protein
2.Tetrahydropalmatine acts on α7nAChR to regulate inflammation and polarization of BV2 microglia.
Yan-Jun WANG ; Guo-Liang DAI ; Pei-Yao CHEN ; Hua-Xi HANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(11):3117-3126
Based on the α7 nicotinic acetylcholine receptor(α7nAChR), this study examined how tetrahydropalmatine(THP) affected BV2 microglia exposed to lipopolysaccharide(LPS), aiming to clarify the possible mechanism underlying the anti-depression effect of THP from the perspectives of preventing inflammation and regulating polarization. First, after molecular docking and determination of the content of Corydalis saxicola Bunting total alkaloids, THP was initially identified as a possible anti-depression component. The BV2 microglia model of inflammation was established with LPS. BV2 microglia were allocated into a normal group, a model group, low-and high-dose(20 and 40 μmol·L~(-1), respectively) THP groups, and a THP(20 μmol·L~(-1))+α7nAChR-specific antagonist MLA(1 μmol·L~(-1)) group. The CCK-8 assay was used to screen the safe concentration of THP. A light microscope was used to examine the morphology of the cells. Western blot and immunofluorescence were used to determine the expression of α7nAChR. qRT-PCR was performed to determine the mRNA levels of inducible nitric oxide synthase(iNOS), cluster of differentiation 86(CD86), suppressor of cytokine signaling 3(SOCS3), arginase-1(Arg-1), cluster of differentiation 206(CD206), tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1β. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. The experimental results showed that THP at concentrations of 40 μmol·L~(-1) and below had no effect on BV2 microglia. THP improved the morphology of BV2 microglia, significantly up-regulated the protein level of α7nAChR, significantly down-regulated the mRNA levels of iNOS, CD86, SOCS3, TNF-α, IL-6, and IL-1β, significantly up-regulated the mRNA levels of Arg-1 and CD206, and dramatically lowered the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. However, the antagonist MLA abolished the above-mentioned ameliorative effects of THP on LPS-treated BV2 microglia. As demonstrated by the aforementioned findings, THP protected LPS-treated BV2 microglia by regulating the M1/M2 polarization and preventing inflammation, which might be connected to the regulation of α7nAChR on BV2 microglia.
Berberine Alkaloids/chemistry*
;
alpha7 Nicotinic Acetylcholine Receptor/chemistry*
;
Microglia/metabolism*
;
Mice
;
Animals
;
Cell Line
;
Corydalis/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Inflammation/drug therapy*
;
Nitric Oxide Synthase Type II/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
3.Effects of Zhuang medicine Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke model rats via the P2X7R/NLRP3 pathway.
Liangji GUO ; Ligui GAN ; Zujie QIN ; Hongli TENG ; Chenglong WANG ; Jiangcun WEI ; Xiaoping MEI
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):985-991
Objective To explore the effects of Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke (IS) rats via the P2X purinoceptor 7 receptor (P2X7R)/NLR family pyrin domain-containing 3 (NLRP3) pathway. Methods The rats were divided into five groups: the IS group, control group, Shuanglu Tongnao Formula group, P2X7R inhibitor brilliant blue G (BBG) group, and Shuanglu Tongnao Formula combined with P2X7R activator adenosine triphosphate (ATP) group, with 18 rats in each group. Except for the control group, rats in all other groups were used to construct an IS model using the suture method. After successful modeling, the drug was given once a day for 2 weeks. Neurological function scores and cerebral infarction volume ratios were measured in rats. Pathological examination of the ischemic penumbra brain tissue was performed. Immunofluorescence staining was used to quantify the proportions of microglia co-expressing both inducible nitric oxide synthase (iNOS) and ionized calcium-binding adapter molecule 1 (Iba1), as well as arginase 1 (Arg1) and Iba1, in the ischemic penumbra brain tissue. ELISA was used to detect tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interleukin 6 (IL-6) and IL-10 in the ischemic penumbra brain tissue. Western blotting was used to measure P2X7R, NLRP3, and IL-1β proteins in the ischemic penumbra brain tissue. Results Compared with the control group, the IS group showed disordered neuronal arrangement, nuclear condensation, and obvious infiltration of inflammatory cells in the ischemic penumbra; significantly elevated neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with reduced proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. Compared with the IS group, the Zhuang medicine Shuanglu Tongnao Formula and BBG groups demonstrated alleviated brain tissue damage; reduced neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with increased proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. ATP reversed the effects of Zhuang medicine Shuanglu Tongnao Formula on microglial polarization and neuroinflammation in IS rats. Conclusion Zhuang medicine Shuanglu Tongnao Formula may promote the transformation of microglia from M1 type to M2 type by inhibiting the P2X7R/NLRP3 pathway, thereby improving neuroinflammation in IS rats.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Receptors, Purinergic P2X7/metabolism*
;
Male
;
Drugs, Chinese Herbal/pharmacology*
;
Rats
;
Ischemic Stroke/pathology*
;
Rats, Sprague-Dawley
;
Disease Models, Animal
;
Signal Transduction/drug effects*
;
Neuroinflammatory Diseases/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Interleukin-10/metabolism*
;
Brain Ischemia/drug therapy*
;
Microglia/metabolism*
4.Effects of hyperoxia on the expression of hippocampal N-methyl D-aspartate receptor 1 and its synapse-associated molecules in neonatal rats.
Yi XIONG ; Lin CHENG ; Na JIANG ; Tuan-Mei WANG ; Tao BO
Chinese Journal of Contemporary Pediatrics 2025;27(8):1002-1010
OBJECTIVES:
To investigate the effects of hyperoxia on the expression of N-methyl-D-aspartate receptor 1 (NMDAR1) and its synapse-associated molecules, including cannabinoid receptor 1 (CB1R), postsynaptic density 95 (PSD95), and synapsin (SYN), in the hippocampus of neonatal rats.
METHODS:
One-day-old Sprague-Dawley neonatal rats were randomly divided into a hyperoxia group and a control group (n=8 per group). The hyperoxia group was exposed to 80% ± 5% oxygen continuously, while the control group was exposed to room air, for 7 days. At 1, 3, and 7 days after hyperoxia exposure, hematoxylin and eosin (HE) staining was used to observe histopathological changes in the brain. The expression levels of NMDAR1, CB1R, PSD95, and SYN proteins and mRNAs in the hippocampus were detected by immunohistochemistry, Western blotting, and quantitative real-time PCR.
RESULTS:
After 7 days of hyperoxia exposure, the hyperoxia group showed decreased neuronal density and disordered arrangement in brain tissue. Compared with the control group, after 1 day of hyperoxia exposure, CB1R mRNA and both NMDAR1 and CB1R protein expression in the hyperoxia group were significantly downregulated, while SYN protein expression was significantly upregulated (P<0.05). After 3 days, mRNA expression of NMDAR1, CB1R, and SYN was significantly decreased (P<0.05); NMDAR1 and CB1R protein expression was significantly downregulated (P<0.05), while PSD95 and SYN protein expression was significantly upregulated (P<0.05). After 7 days of hyperoxia, the protein expression of NMDAR1 and CB1R was significantly upregulated (P<0.05).
CONCLUSIONS
Continuous hyperoxia exposure induces time-dependent changes in the expression levels of NMDAR1 and its synapse-associated molecules in the hippocampus of neonatal rats.
Animals
;
Receptors, N-Methyl-D-Aspartate/genetics*
;
Rats, Sprague-Dawley
;
Hippocampus/pathology*
;
Rats
;
Animals, Newborn
;
Receptor, Cannabinoid, CB1/genetics*
;
Hyperoxia/metabolism*
;
Disks Large Homolog 4 Protein/genetics*
;
Synapsins/genetics*
;
Synapses
;
Male
;
Female
;
RNA, Messenger/analysis*
5.Analgesic Effect of Dehydrocorydaline on Chronic Constriction Injury-Induced Neuropathic Pain via Alleviating Neuroinflammation.
Bai-Ling HOU ; Chen-Chen WANG ; Ying LIANG ; Ming JIANG ; Yu-E SUN ; Yu-Lin HUANG ; Zheng-Liang MA
Chinese journal of integrative medicine 2025;31(6):499-505
OBJECTIVE:
To illustrate the role of dehydrocorydaline (DHC) in chronic constriction injury (CCI)-induced neuropathic pain and the underlying mechanism.
METHODS:
C57BL/6J mice were randomly divided into 3 groups by using a random number table, including sham group (sham operation), CCI group [intrathecal injection of 10% dimethyl sulfoxide (DMSO)], and CCI+DHC group (intrathecal injection of DHC), 8 mice in each group. A CCI mouse model was conducted to induce neuropathic pain through ligating the right common sciatic nerve. On day 14 after CCI modeling or sham operation, mice were intrathecal injected with 5 µL of 10% DMSO or 10 mg/kg DHC (5 µL) into the 5th to 6th lumbar intervertebral space (L5-L6). Pregnant ICR mice were sacrificed for isolating primary spinal neurons on day 14 of embryo development for in vitro experiment. Pain behaviors were evaluated by measuring the paw withdrawal mechanical threshold (PWMT) of mice. Immunofluorescence was used to observe the activation of astrocytes and microglia in mouse spinal cord. Protein expressions of inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), phosphorylation of N-methyl-D-aspartate receptor subunit 2B (p-NR2B), and NR2B in the spinal cord or primary spinal neurons were detected by Western blot.
RESULTS:
In CCI-induced neuropathic pain model, mice presented significantly decreased PWMT, activation of glial cells, overexpressions of iNOS, TNF-α, IL-6, and higher p-NR2B/NR2B ratio in the spinal cord (P<0.05 or P<0.01), which were all reversed by a single intrathecal injection of DHC (P<0.05 or P<0.01). The p-NR2B/NR2B ratio in primary spinal neurons were also inhibited after DHC treatment (P<0.05).
CONCLUSION
An intrathecal injection of DHC relieved CCI-induced neuropathic pain in mice by inhibiting the neuroinflammation and neuron hyperactivity.
Animals
;
Neuralgia/etiology*
;
Mice, Inbred C57BL
;
Analgesics/pharmacology*
;
Neuroinflammatory Diseases/pathology*
;
Constriction
;
Male
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Mice, Inbred ICR
;
Microglia/pathology*
;
Spinal Cord/drug effects*
;
Female
;
Mice
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Constriction, Pathologic/complications*
;
Interleukin-6/metabolism*
;
Astrocytes/metabolism*
;
Chronic Disease
;
Neurons/metabolism*
6.Beneficial Effects of Dendrobium officinale Extract on Insomnia Rats Induced by Strong Light and Noise via Regulating GABA and GABAA Receptors.
Heng-Pu ZHOU ; Jie SU ; Ke-Jian WEI ; Su-Xiang WU ; Jing-Jing YU ; Yi-Kang YU ; Zhuang-Wei NIU ; Xiao-Hu JIN ; Mei-Qiu YAN ; Su-Hong CHEN ; Gui-Yuan LYU
Chinese journal of integrative medicine 2025;31(6):490-498
OBJECTIVE:
To explore the therapeutic effects and underlying mechanisms of Dendrobium officinale (Tiepi Shihu) extract (DOE) on insomnia.
METHODS:
Forty-two male Sprague-Dawley rats were randomly divided into 6 groups (n=7 per group): normal control, model control, melatonin (MT, 40 mg/kg), and 3-dose DOE (0.25, 0.50, and 1.00 g/kg) groups. Rats were raised in a strong-light (10,000 LUX) and -noise (>80 db) environment (12 h/d) for 16 weeks to induce insomnia, and from week 10 to week 16, MT and DOE were correspondingly administered to rats. The behavior tests including sodium pentobarbital-induced sleep experiment, sucrose preference test, and autonomous activity test were used to evaluate changes in sleep and emotions of rats. The metabolic-related indicators such as blood pressure, blood viscosity, blood glucose, and uric acid in rats were measured. The pathological changes in the cornu ammonis 1 (CA1) region of rat brain were evaluated using hematoxylin and eosin staining and Nissl staining. Additionally, the sleep-related factors gamma-aminobutyric acid (GABA), glutamate (GA), 5-hydroxytryptamine (5-HT), and interleukin-6 (IL-6) were measured using enzyme linked immunosorbent assay. Finally, we screened potential sleep-improving receptors of DOE using polymerase chain reaction (PCR) array and validated the results with quantitative PCR and immunohistochemistry.
RESULTS:
DOE significantly improved rats' sleep and mood, increased the sodium pentobarbital-induced sleep time and sucrose preference index, and reduced autonomic activity times (P<0.05 or P<0.01). DOE also had a good effect on metabolic abnormalities, significantly reducing triglyceride, blood glucose, blood pressure, and blood viscosity indicators (P<0.05 or P<0.01). DOE significantly increased the GABA content in hippocampus and reduced the GA/GABA ratio and IL-6 level (P<0.05 or P<0.01). In addition, DOE improved the pathological changes such as the disorder of cell arrangement in the hippocampus and the decrease of Nissel bodies. Seven differential genes were screened by PCR array, and the GABAA receptors (Gabra5, Gabra6, Gabrq) were selected for verification. The results showed that DOE could up-regulate their expressions (P<0.05 or P<0.01).
CONCLUSION
DOE demonstrated remarkable potential for improving insomnia, which may be through regulating GABAA receptors expressions and GA/GABA ratio.
Animals
;
Dendrobium/chemistry*
;
Rats, Sprague-Dawley
;
Male
;
Sleep Initiation and Maintenance Disorders/blood*
;
Plant Extracts/therapeutic use*
;
Receptors, GABA-A/metabolism*
;
Noise/adverse effects*
;
Light/adverse effects*
;
gamma-Aminobutyric Acid/metabolism*
;
Sleep/drug effects*
;
Rats
;
Receptors, GABA/metabolism*
7.Construction and phenotypic analysis of p2rx2 knockout zebrafish lines.
Yong ZHANG ; Qingying SHI ; Hao XIE ; Binling XIE ; Lihua LI ; Weijing WU ; Huaping XIE ; Zi'an XIAO ; Dinghua XIE ; Ruosha LAI
Journal of Central South University(Medical Sciences) 2025;50(6):919-930
OBJECTIVES:
The purinergic receptor P2X2 (P2RX2) encodes an ATP-gated ion channel permeable to Na+, K+, and especially Ca²⁺. Loss-of-function mutations in P2RX2 are known to cause autosomal dominant nonsyndromic deafness 41 (DFNA41), which manifests as high-frequency hearing loss, accelerated presbycusis, and increased susceptibility to noise-induced damage. Zebrafish, owing to their small size, rapid development, high fecundity, transparent embryos, and high gene conservation with humans, provide an ideal model for studying human diseases and developmental mechanisms. This study aims to generate a p2rx2 knockout zebrafish model using CRISPR/Cas9 gene editing system to investigate the effect of p2rx2 deficiency on the auditory system, providing a basis for understanding P2RX2-related hearing loss and developing gene therapy strategies.
METHODS:
Two CRISPR targets (sgRNA1 and sgRNA2) spaced 47 bp apart were designed within the zebrafish p2rx2 gene. Synthesized sgRNAs and Cas9 protein were microinjected into single-cell stage Tübingen (TU)-strain zebrafish embryos. PCR and gel electrophoresis verified editing efficiency at 36 hours post-fertilization (hpf). Surviving embryos were raised to adulthood (F0), tail-clipped, genotyped, and screened for positive mosaics. F1 heterozygotes were generated by outcrossing, and F2 homozygous mutants were obtained by intercrossing. Polymerase chain reaction (PCR) combined with sequencing verified mutation type and heritability. At 5 days post-fertilization (dpf), YO-PRO-1 staining was used to examine hair cell morphology and count in lateral line neuromasts and the otolith region. Auditory evoked potential (AEP) thresholds at 600, 800, 1 000, and 2 000 Hz were measured in nine 4-month-old wild type and mutant zebrafish per group.
RESULTS:
A stable p2rx2 knockout zebrafish line was successfully established. Sequencing revealed a 66 bp insertion at the first target site introducing a premature stop codon (TAA), leading to early termination of protein translation and loss of function. Embryos developed normally with no gross malformations. At 5 dpf, mutants exhibited significantly reduced hair cell density in the otolith region compared with wild type, although lateral line neuromasts were unaffected. AEP testing showed significantly elevated auditory thresholds at all 4 frequencies in homozygous mutants compared with wild type (all P<0.001), indicating reduced hearing sensitivity.
CONCLUSIONS
We successfully generated a p2rx2 loss-of-function zebrafish model using CRISPR/Cas9 technology. p2rx2 deficiency caused hair cell defects in the otolith region and increased auditory thresholds across frequencies, indicating its key role in maintaining zebrafish auditory hair cell function and hearing perception. The phenotype's restriction to the otolith region suggests tissue-specific roles of p2rx2 in sensory organs. This model provides a valuable tool for elucidating the molecular mechanisms of P2RX2-related hearing loss and for screening otoprotective drugs and developing gene therapies.
Animals
;
Zebrafish/genetics*
;
Receptors, Purinergic P2X2/deficiency*
;
CRISPR-Cas Systems/genetics*
;
Gene Knockout Techniques
;
Phenotype
;
Zebrafish Proteins/genetics*
;
Disease Models, Animal
8.Chaihu Shugan Decoction improves cognitive impairment after epilepsy in rats by regulating hippocampal NMDAR subunits via upregulating ASIC1.
Yunhong YU ; Wei XIE ; Hui LI
Journal of Southern Medical University 2025;45(7):1506-1512
OBJECTIVES:
To explore the therapeutic mechanism of Chaihu Shugan (CHSG) Decoction for improving cognitive impairment in rats with epilepsy induced by lithium chloride and pilocarpine.
METHODS:
Male SD rat models of cognitive impairment model after epilepsy induced by intraperitoneal injection with lithium chloride and pilocarpine were randomly divided into 5 groups (n=12) for treatment with daily gavage of saline, donepezil (90 mg/kg), or CHSG Decoction at 2.5, 5.0, 10, 20 and 40 g/kg for 4 consecutive weeks, with 10 rats with intraperitoneal injection with saline as the blank control group. Morris water maze test was used to evaluate cognitive and behavioral changes of the rats after treatment. The mRNA and protein expressions of ASIC1, NR1, NR2A and NR2B in the hippocampus of rats were detected using RT-qPCR and Western blotting.
RESULTS:
Compared with those with saline treatment, the rat models treated with CHSG Decoction at 5 and 10 g/kg showed significantly shortened escape latency and prolonged stay in the target quadrant with increased number of platform crossings in Morris water maze test. CHSG Decoction treatment at the two doses significantly increased ASIC1, NR1, NR2A and NR2B protein expressions in the hippocampus of the rat models, and their mRNA expression levels were all increased significantly after the treatment at the doses above 2.5 g/kg.
CONCLUSIONS
CHSG Decoction can improve cognitive impairment in rats after epilepsy possibly by regulating the expression and channel activity of NMDAR protein and its subunit protein via upregulating ASIC1 to modulate neuronal excitability and synaptic plasticity in the hippocampus.
Animals
;
Hippocampus/drug effects*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Acid Sensing Ion Channels/metabolism*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Epilepsy/complications*
;
Cognitive Dysfunction/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Up-Regulation
;
Maze Learning
9.Electroacupuncture improves myocardial injury in rats with acute myocardial ischemia by inhibiting HPA axis hyperactivity via modulating hippocampal glutamatergic system.
Kun WANG ; Haiyan ZUO ; Jiaojiao ZHANG ; Xin WU ; Wenhui WANG ; Shengbing WU ; Meiqi ZHOU
Journal of Southern Medical University 2025;45(8):1599-1607
OBJECTIVES:
To clarify the role of hippocampal glutamate system in regulating HPA axis in mediating the effect of electroacupuncture (EA) at the heart meridian for improving myocardial injury in rats with acute myocardial ischemia (AMI).
METHODS:
Male SD rats were randomized into sham-operated group, AMI group, EA group, and L-glutamic acid+EA group (n=9). Rat models of AMI were established by left descending coronary artery ligation, and EA was applied at the "Shenmen-Tongli" segment; the rats in L-glutamic acid+EA group were subjected to microinjection of L-glutamic acid into the bilateral hippocampus prior to AMI modeling and EA treatment. Cardiac functions of the rats were evaluated using echocardiography, and ECG and heart rate variation (HRV) were analyzed using PowerLab and LabChart. Pathological changes in the myocardial tissue was examined using HE staining, and serum levels of myocardial enzymes were detected with ELISA. Myocardial expressions of TH and GAP43 were detected with immunohistochemistry, and colocalization of VGLUT1, VGLUT2 and c-fos were observed using immunofluorescence staining; the expressions of VGLUT1, VGLUT2, NMDAR1 and NMDAR2B were detected using Western blotting.
RESULTS:
The rat models of AMI showed significantly decreased LVEF and LVFS and increased serum levels of myocardial enzymes in positive correlation with the HPA axis. Numerous TH- and GAP43-positive cells were observed in the hippocampus, where the expressions of NE and E, neurons colabeled with VGLUT1, VGLUT2 and c-fos, and expressions of VGLUT1, VGLUT2, NMDAR1, NMDAR2B and Glu increased significantly. All these changes were significantly improved by interventions with EA as compared with those in AMI and L-Glutamate+EA groups.
CONCLUSIONS
In rats with AMI, EA at the heart meridian can regulate excessive glutamate release in the hippocampus, thereby inhibiting HPA axis hyperactivity and reducing sympathetic nerve activity to protect the myocardial tissue.
Animals
;
Electroacupuncture
;
Male
;
Rats, Sprague-Dawley
;
Hippocampus/metabolism*
;
Rats
;
Glutamic Acid/metabolism*
;
Myocardial Ischemia/physiopathology*
;
Hypothalamo-Hypophyseal System/physiopathology*
;
Pituitary-Adrenal System/physiopathology*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
10.Ziwuliuzhu acupuncture modulates Glu/GABA‑Gln metabolic loop abnormalities in insomniac rats.
Jiarong XU ; Ao HUANG ; Zhikai DING ; Yu BAO ; Canghuan ZHAO ; Wenzhi CAI
Journal of Southern Medical University 2025;45(8):1616-1624
OBJECTIVES:
To investigate the therapeutic effect of Ziwuliuzhu acupuncture in a rat model of insomnia and its regulatory effect on the glutamic acid (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) metabolic loop.
METHODS:
Forty male SD rats were randomly assigned to control group, model group, Najia group and Nazi group (n=10). In the latter 3 groups, rat models of insomnia were established by intraperitoneal injections of p-chlorophenylalanine and verified using a sodium pentobarbital-induced sleep test. After modeling, the rats in Najia and Nazi groups received acupuncture for 7 days at specifically chosen sets of acupoints based on the Ziwuliuzhu rationale in traditional Chinese medicine. Pathological changes in the hypothalamic tissue of the rats were examined with HE staining, and the levels of Glu and GABA in the hypothalamus were determined with high-performance liquid chromatography (HPLC)-mass spectrometry (MS)/MS. Immunohistochemistry was used to detect the expressions of GABAA receptors (GABAARs) in the hypothalamus, and the expression levels of glutamate decarboxylase (GAD65/67) and glutamine synthetase (GS) were determined with Western blotting.
RESULTS:
Compared with the model group, the rats in Najia and Nazi groups exhibited decreased Glu levels and GABAA receptor expression and increased GABA levels with a decreased Glu/GABA ratio in the hypothalamus. Ziwuliuzhu acupuncture significantly increased the protein expressions of GAD65 and GAD67 and lowered the expression of GS in the hypothalamus in the rat models of insomnia.
CONCLUSIONS
Ziwuliuzhu acupuncture produces sedative and hypnotic effects in rat models of insomnia possibly by regulating Glu and GABA-Gln metabolism to restore the excitatory/inhibitory balance between Glu and GABA.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
gamma-Aminobutyric Acid/metabolism*
;
Sleep Initiation and Maintenance Disorders/therapy*
;
Glutamine/metabolism*
;
Glutamic Acid/metabolism*
;
Acupuncture Therapy
;
Hypothalamus/metabolism*
;
Receptors, GABA-A/metabolism*
;
Acupuncture Points

Result Analysis
Print
Save
E-mail