1.Conditioned medium of osteoclasts promotes angiogenesis in endothelial cells after lactic acid intervention
Hongli HUANG ; Wen NIE ; Yuying MAI ; Yuan QIN ; Hongbing LIAO
Chinese Journal of Tissue Engineering Research 2025;29(11):2210-2217
BACKGROUND:As a degradable scaffold material for bone tissue engineering,lactic acid is widely used in tissue regeneration and repair research,and plays an important role in promoting tissue healing,new bone formation and angiogenesis. OBJECTIVE:To observe the effect of lactic acid degradation products on osteoclasts and to investigate the effects of lactic-interfered osteoclast conditioned medium on the proliferation,migration and tube-forming capacity of human umbilical vein endothelial cells. METHODS:(1)The mouse monocyte macrophage cell line RAW264.7 at logarithmic growth period was selected,and adherent cells were cultured in the osteoclast induction medium(DMEM medium with nuclear factor-κB receptor-activating factor ligand and 10%fetal bovine serum)containing different concentrations of lactic acid(0,5,10,20 mmol/L).After 5 days of culture,tartrate-resistant acid phosphatase staining and cytoskeletal fibrillar actin staining were conducted.After 24 hours of culture,RT-PCR was used to detect the mRNA expression of tartrate-resistant acid phosphatase 5.(2)RAW264.7 cells at logarithmic growth period were selected and adherent cells were divided into two groups.Control group was cultured in the osteoclast induction medium,while experimental group was cultured in the osteoclast induction medium containing 10 mmol/L lactic acid.After 5 days of culture,the medium in each group was removed and the cells in the two groups were cultured in the serum-free DMEM medium for another 24 hours.Cell supernatant was then collected and used as the conditioned medium after mixed with an equal volume of DMEM medium containing 10%fetal bovine serum.Human umbilical vein endothelial cells at the logarithmic growth phase were taken and separately co-cultured with the conditioned medium of the control and experimental groups.The proliferation,migration and tube-forming ability of human umbilical vein endothelial cells were observed by cell counting kit-8 assay,migration assay,scratch assay and tube-forming assay.The mRNA and protein expression of angiogenesis-related genes and proteins were observed by RT-PCR and western blot. RESULTS AND CONCLUSION:Tartrate-resistant acid phosphatase staining and cytoskeletal fibrillar actin staining showed that 5 and 10 mmol/L lactic acid promoted osteoclastic differentiation of RAW264.7 cells and the promoting effect of 10 mmol/L lactate was more significant.RT-PCR results showed that the expression of tartrate-resistant acid phosphatase-5 mRNA of osteoclast-related genes was the highest when the lactic acid concentration was 5,10,and 20 mmol/L(P<0.05),especially 10 mmol/L.Compared with the control group,the proliferation,migration and tube-forming abilities of human umbilical vein endothelial cells were significantly increased in the experimental group(P<0.05).Compared with the control group,the expression levels of vascular endothelial growth factor and angiogenin 1 mRNA and protein were increased in the experimental group(P<0.05).To conclude,lactate-induced osteoclast conditioned medium could promote the angiogenesis of endothelial cells,and the mechanism may be related to the promotion of the expression of vascular endothelial growth factor and angiogenin 1.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7.Platelet bacterial contamination in China: a meta-analysis
Xiuyun LIAO ; Yang HUANG ; Yuan ZHANG ; Miao HE ; Zhan GAO
Chinese Journal of Blood Transfusion 2025;38(9):1272-1279
Objective: To investigate the status and influencing factors of platelet bacterial contamination in China, and to provide theoretical support for relevant policies in blood collection and transfusion institutions. Methods: A meta-analysis by systematically searching studies on platelet bacterial contamination in China published between 1998 and 2023 was conducted. Data analysis was performed using R4.4 software to combine studies that met the inclusion criteria. Results: Twenty-three studies were included after screening. The combined analysis showed that the overall contamination rate of platelets in China was 0.18% (95% CI: 0.12%-0.24%). The contamination rate of manually condensed platelets was significantly higher than that of apheresis platelet concentrates (0.28% vs 0.17%, P<0.01). No significant difference in platelet contamination rates was found between eastern and central regions (0.21% vs 0.15%, P>0.01). The contamination rate of aerobic bacteria was higher than that of anaerobic bacteria (0.11% vs 0.06%, P<0.01). Publication bias analysis indicated robust results, and sensitivity analysis showed minimal impact of excluding individual studies on the overall conclusion. Conclusion: Although the platelet contamination rate in China is generally low, significant differences exist across collection methods and regions.
8.Association between Fish Consumption and Stroke Incidence Across Different Predicted Risk Populations: A Prospective Cohort Study from China.
Hong Yue HU ; Fang Chao LIU ; Ke Yong HUANG ; Chong SHEN ; Jian LIAO ; Jian Xin LI ; Chen Xi YUAN ; Ying LI ; Xue Li YANG ; Ji Chun CHEN ; Jie CAO ; Shu Feng CHEN ; Dong Sheng HU ; Jian Feng HUANG ; Xiang Feng LU ; Dong Feng GU
Biomedical and Environmental Sciences 2025;38(1):15-26
OBJECTIVE:
The relationship between fish consumption and stroke is inconsistent, and it is uncertain whether this association varies across predicted stroke risks.
METHODS:
A cohort study comprising 95,800 participants from the Prediction for Atherosclerotic Cardiovascular Disease Risk in China project was conducted. A standardized questionnaire was used to collect data on fish consumption. Participants were stratified into low- and moderate-to-high-risk categories based on their 10-year stroke risk prediction scores. Hazard ratios ( HRs) and 95% confidence intervals ( CIs) were estimated using Cox proportional hazard models and additive interaction by relative excess risk due to interaction (RERI), attributable proportion (AP), and synergy index (SI).
RESULTS:
During 703,869 person-years of follow-up, 2,773 incident stroke events were identified. Higher fish consumption was associated with a lower risk of stroke, particularly among moderate-to-high-risk individuals ( HR = 0.53, 95% CI: 0.47-0.60) than among low-risk individuals ( HR = 0.64, 95% CI: 0.49-0.85). A significant additive interaction between fish consumption and predicted stroke risk was observed (RERI = 4.08, 95% CI: 2.80-5.36; SI = 1.64, 95% CI: 1.42-1.89; AP = 0.36, 95% CI: 0.28-0.43).
CONCLUSION
Higher fish consumption was associated with a lower risk of stroke, and this beneficial association was more pronounced in individuals with moderate-to-high stroke risk.
Humans
;
China/epidemiology*
;
Male
;
Female
;
Stroke/etiology*
;
Middle Aged
;
Prospective Studies
;
Incidence
;
Aged
;
Animals
;
Fishes
;
Risk Factors
;
Diet
;
Seafood
;
Adult
;
Cohort Studies
9.Study on the mechanism of Yifei xuanfei jiangzhuo formula against vascular dementia
Guifeng ZHUO ; Wei CHEN ; Jinzhi ZHANG ; Deqing HUANG ; Bingmao YUAN ; Shanshan PU ; Xiaomin ZHU ; Naibin LIAO ; Mingyang SU ; Xiangyi CHEN ; Yulan FU ; Lin WU
China Pharmacy 2024;35(18):2207-2212
OBJECTIVE To investigate the mechanism of Yifei xuanfei jiangzhuo formula (YFXF) against vascular dementia (VD). METHODS The differentially expressed genes of YFXF (YDEGs) were obtained by network pharmacology. High-risk genes were screened from YDEGs by using the nomogram model. The optimal machine learning models in generalized linear, support vector machine, extreme gradient boosting and random forest models were screened based on high-risk genes. VD model rats were established by bilateral common carotid artery occlusion, and were randomly divided into model group and YFXF group (12.18 g/kg, by the total amount of crude drugs), and sham operation group was established additionally, with 6 rats in each group. The effects of YFXF on behavior (using escape latency and times of crossing platform as indexes), histopathologic changes of cerebral cortex, and the expression of proteins related to the secreted phosphoprotein 1 (SPP1)/phosphoinositide 3-kinase (PI3K)/protein kinase B (aka Akt) signaling pathway and the mRNA expression of SPP1 in cerebral cortex of VD rats were evaluated. RESULTS A total of 6 YDEGs were obtained, among which SPP1, CCL2, HMOX1 and HSPB1 may be high-risk genes of VD. The generalized linear model based on high-risk genes had the highest prediction accuracy (area under the curve of 0.954). Compared with the model group, YFXF could significantly shorten the escape latency of VD rats, significantly increase the times of crossing platform (P<0.05); improve the pathological damage of cerebral cortex, such as neuronal shrinkage and neuronal necrosis; significantly reduce the expressions of SPP1 protein and mRNA (P<0.05), while significantly increase the phosphorylation levels of PI3K and Akt (P<0.05). CONCLUSIONS VD high-risk genes SPP1, CCL2, HMOX1 and HSPB1 may be the important targets of YFXF. YFXF may play an anti-VD role by down-regulating the protein and mRNA expressions of SPP1 and activating PI3K/Akt signaling pathway.
10.Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
Shou-Wu WU ; Shao-Kun LIN ; Zhong-Zhu NIAN ; Xin-Wen WANG ; Wei-Nian LIN ; Li-Ming ZHUANG ; Zhi-Sheng WU ; Zhi-Wei HUANG ; A-Min WANG ; Ni-Li GAO ; Jia-Wen CHEN ; Wen-Ting YUAN ; Kai-Xian LU ; Jun LIAO
Progress in Biochemistry and Biophysics 2024;51(9):2182-2193
ObjectiveTo investigate the effect of mucin 1 (MUC1) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) and its regulatory mechanism. MethodsThe 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital. The expression of MUC1 was measured by real-time quantitative PCR (qPCR) in the patients with PNC. The 5-8F and HNE1 cells were transfected with siRNA control (si-control) or siRNA targeting MUC1 (si-MUC1). Cell proliferation was analyzed by cell counting kit-8 and colony formation assay, and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells. The qPCR and ELISA were executed to analyze the levels of TNF-α and IL-6. Western blot was performed to measure the expression of MUC1, NF-кB and apoptosis-related proteins (Bax and Bcl-2). ResultsThe expression of MUC1 was up-regulated in the NPC tissues, and NPC patients with the high MUC1 expression were inclined to EBV infection, growth and metastasis of NPC. Loss of MUC1 restrained malignant features, including the proliferation and apoptosis, downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells. ConclusionDownregulation of MUC1 restrained biological characteristics of malignancy, including cell proliferation and apoptosis, by inactivating NF-κB signaling pathway in NPC.

Result Analysis
Print
Save
E-mail