1.Metabolic reprogramming nanomedicine potentiates colon cancer sonodynamic immunotherapy by inhibiting the CD39/CD73/ADO pathway.
Yuanyuan ZHANG ; Weiwei JIN ; Zhichao DENG ; Bowen GAO ; Yuanyuan ZHU ; Junlong FU ; Chenxi XU ; Wenlong WANG ; Ting BAI ; Lianying JIAO ; Hao WU ; Mingxin ZHANG ; Mingzhen ZHANG
Acta Pharmaceutica Sinica B 2025;15(5):2655-2672
Sonodynamic therapy (SDT) can potentially induce immunogenic cell death in tumor cells, leading to the release of ATP, and facilitating the initiation of an immune response. Nevertheless, the enzymes CD39 and CD73 can swiftly convert ATP into immunosuppressive adenosine (ADO), resulting in an immunosuppressive tumor microenvironment (TME). This study introduced a nanomedicine (QD/POM1@NP@M) engineered to reprogram TME by modulating the CD39/CD73/ADO pathway. The nanomedicine encapsulated sonosensitizers silver sulfide quantum dots, and the CD39 inhibitor POM1, while also incorporating homologous tumor cell membranes to enhance targeting capabilities. This integrated approach, on the one hand, stimulates the release of ATP via SDT, thereby initiating the immune response. In addition, it reduced the accumulation of ADO by inhibiting CD39 activity, which ameliorated the immunosuppressive TME. Upon administration, the nanomedicine demonstrated substantial anti-tumor efficacy by facilitating the infiltration of anti-tumor immune cells, while reducing the immunosuppressive cells. This modulation effectively transformed the TME from an immunologically "cold" state to a "hot" state. Furthermore, combined with the checkpoint inhibitor α-PDL1, the nanomedicine augmented systemic anti-tumor immunity and promoted the establishment of long-term immune memory. This study provides an innovative strategy for combining non-invasive SDT and ATP-driven immunotherapy, offering new ideas for future cancer treatment.
2.Mechanism of the Rpn13-induced activation of Uch37.
Lianying JIAO ; Songying OUYANG ; Neil SHAW ; Gaojie SONG ; Yingang FENG ; Fengfeng NIU ; Weicheng QIU ; Hongtao ZHU ; Li-Wei HUNG ; Xiaobing ZUO ; V ELEONORA SHTYKOVA ; Ping ZHU ; Yu-Hui DONG ; Ruxiang XU ; Zhi-Jie LIU
Protein & Cell 2014;5(8):616-630
Uch37 is a de-ubiquitinating enzyme that is activated by Rpn13 and involved in the proteasomal degradation of proteins. The full-length Uch37 was shown to exhibit low iso-peptidase activity and is thought to be auto-inhibited. Structural comparisons revealed that within a homo-dimer of Uch37, each of the catalytic domains was blocking the other's ubiquitin (Ub)-binding site. This blockage likely prevented Ub from entering the active site of Uch37 and might form the basis of auto-inhibition. To understand the mode of auto-inhibition clearly and shed light on the activation mechanism of Uch37 by Rpn13, we investigated the Uch37-Rpn13 complex using a combination of mutagenesis, biochemical, NMR, and small-angle X-ray scattering (SAXS) techniques. Our results also proved that Uch37 oligomerized in solution and had very low activity against the fluorogenic substrate ubiquitin-7-amino-4-methylcoumarin (Ub-AMC) of de-ubiquitinating enzymes. Uch37Δ(Hb,Hc,KEKE), a truncation removal of the C-terminal extension region (residues 256-329) converted oligomeric Uch37 into a monomeric form that exhibited iso-peptidase activity comparable to that of a truncation-containing the Uch37 catalytic domain only. We also demonstrated that Rpn13C (Rpn13 residues 270-407) could disrupt the oligomerization of Uch37 by sequestering Uch37 and forming a Uch37-Rpn13 complex. Uch37 was activated in such a complex, exhibiting 12-fold-higher activity than Uch37 alone. Time-resolved SAXS (TR-SAXS) and FRET experiments supported the proposed mode of auto-inhibition and the activation mechanism of Uch37 by Rpn13. Rpn13 activated Uch37 by forming a 1:1 stoichiometric complex in which the active site of Uch37 was accessible to Ub.
Binding Sites
;
Catalytic Domain
;
Chromatography, Gel
;
Crystallography, X-Ray
;
Humans
;
Membrane Glycoproteins
;
chemistry
;
genetics
;
metabolism
;
Nuclear Magnetic Resonance, Biomolecular
;
Protein Binding
;
Protein Conformation
;
Protein Multimerization
;
Scattering, Small Angle
;
Ubiquitin Thiolesterase
;
chemistry
;
genetics
;
metabolism
;
Ultracentrifugation

Result Analysis
Print
Save
E-mail