1.Aerobic Exercise Improves Cognitive Function of Aging Mice by Regulating Intestinal Flora-metabolite Network
An-Feng WANG ; Tong WU ; Hu ZHANG ; Ji-Ling LIANG ; Ning CHEN
Progress in Biochemistry and Biophysics 2025;52(6):1484-1498
ObjectiveThis study aimed to explore the effects of aerobic exercise on cognitive function in aging mice and to elucidate the underlying molecular mechanisms by which aerobic exercise ameliorates cognitive decline through the regulation of gut microbiota-metabolite network. By providing novel insights into the interplay between exercise, gut microbiota, and cognitive health, this research seeks to offer a robust theoretical foundation for developing anti-aging strategies and personalized exercise interventions targeting aging-related cognitive dysfunction. MethodsUsing naturally aged C57BL/6 mice as the experimental model, this study employed a multi-omics approach combining 16S rRNA sequencing and wide-targeted metabolomics analysis. A total of 18 mice were divided into 3 groups: young control (YC, 4-month-old), old control (OC, 21-month-old), and old+exercise (OE, 21-month-old with 12 weeks of moderate-intensity treadmill training) groups. Behavioral assessments, including the Morris water maze (MWM) test, were conducted to evaluate cognitive function. Histopathological examinations of brain tissue sections provided morphological evidence of neuronal changes. Fecal samples were collected for gut microbiota and metabolite profiling via 16S rRNA sequencing and ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS). Data were analyzed using a combination of statistical and bioinformatics tools to identify differentially abundant microbial taxa and metabolites and to construct interaction networks between them. ResultsBehavioral tests revealed that 12 weeks of aerobic exercise significantly improved spatial learning and memory capacity of aged mice, as evidenced by reduced escape latency and increased target area exploration and platform crossings in the MWM. Histopathological analysis demonstrated that exercise mitigated aging-related neuronal damage in the hippocampus, enhancing neuronal density and morphology. 16S rRNA sequencing indicated that exercise increased gut microbiota α‑diversity and enriched beneficial bacterial genera, including Bifidobacterium, Parabacteroides, and Rikenella. Metabolomics analysis identified 32 differentially regulated metabolites between OC and OE groups, with 94 up-regulated and 30 down-regulated in the OE group when compared with OC group. These metabolites were primarily involved in energy metabolism reprogramming (e.g., L-homocitrulline), antioxidant defense (e.g., L-carnosine), neuroprotection (e.g., lithocholic acid), and DNA repair (e.g., ADP-ribose). Network analysis further revealed strong positive correlations between specific bacteria and metabolites, such as Parabacteroides with ADP-ribose and Bifidobacterium with lithocholic acid, suggesting potential neuroprotective pathways mediated by the gut microbiota-metabolite axis. ConclusionThis study provides comprehensive evidence that aerobic exercise elicits cognitive benefits in aging mice by modulating the gut microbiota-metabolite network. These findings highlight three key mechanisms: (1) the proliferation of beneficial gut bacteria enhances metabolic reprogramming to boost DNA repair pathways; (2) elevated neuroinflammation-inhibiting factors reduce neurodegenerative changes; and (3) enhanced antioxidant defenses maintain neuronal homeostasis. These results underscore the critical role of the “microbiota-metabolite-brain” axis in mediating the cognitive benefits of aerobic exercise. This study not only advances our understanding of the gut-brain axis in aging but also offers a scientific basis for developing personalized exercise and probiotic-based interventions targeting aging-related cognitive decline. Future research should further validate these mechanisms in non-human primates and human clinical trials to establish the translational potential of exercise-induced gut microbiota-metabolite modulation for combating neurodegenerative diseases.
2.Surveillance results of common diseases among primary and secondary school students in Yichang City in 2019 - 2022
Yi LIANG ; Zaoxia WANG ; Chi HU ; Xiaoyan MING ; Man XIAO ; Qian WU ; Zhongcheng YANG
Journal of Public Health and Preventive Medicine 2025;36(4):98-101
Objective To investigate the prevalence of common diseases among primary and secondary school students in Yichang City from 2019 to 2022, and to provide a scientific basis for formulating effective intervention measures in the future. Methods By random cluster sampling , 7 schools in urban areas and 5 schools in suburban counties were selected to screen common diseases such as myopia, dental caries, obesity and abnormal spinal curvature. Descriptive epidemiological methods were employed for statistical analysis. Results A total of 17 023 primary and secondary school students were screened from 2019 to 2022. The overall detection rate of common diseases from high to low was myopia (54.12%), caries (36.75%), overweight (15.17%), obesity (11.88%), malnutrition (5.80%), and abnormal spinal curvature (3.49%). The detection rates of myopia and abnormal curvature of the spine showed an increasing trend with years and school stages, while the detection rates of malnutrition and dental caries showed a decreasing trend with years and school stages. The detection rates of overweight and obesity showed no trend difference with years, and the detection rates of obesity showed a decreasing trend with school stages. The rates of myopia, overweight and obesity were higher in urban areas than those in suburban counties, and the rate of dental caries was higher in suburban counties than that in urban areas. The prevalence of overweight, obesity, and malnutrition in boys was higher than that in girls. The prevalence of myopia and dental caries in girls was higher than that in boys. The above differences were statistically significant (all P<0.05). Conclusion Myopia, dental caries, obesity, and abnormal curvature of the spine are the current focus of the prevention and treatment of common diseases in students. There are great differences between different regions, school stages, and genders. The “tripartite linkage” of schools, families, and communities should be achieved with the joint efforts of the education and health departments to actively take targeted intervention measures to reduce the prevalence.
3.Chinese expert consensus on integrated case management by a multidisciplinary team in CAR-T cell therapy for lymphoma.
Sanfang TU ; Ping LI ; Heng MEI ; Yang LIU ; Yongxian HU ; Peng LIU ; Dehui ZOU ; Ting NIU ; Kailin XU ; Li WANG ; Jianmin YANG ; Mingfeng ZHAO ; Xiaojun HUANG ; Jianxiang WANG ; Yu HU ; Weili ZHAO ; Depei WU ; Jun MA ; Wenbin QIAN ; Weidong HAN ; Yuhua LI ; Aibin LIANG
Chinese Medical Journal 2025;138(16):1894-1896
4.Effectiveness of Xuanshen Yishen Decoction on Intensive Blood Pressure Control: Emulation of a Randomized Target Trial Using Real-World Data.
Xiao-Jie WANG ; Yuan-Long HU ; Jia-Ming HUAN ; Shi-Bing LIANG ; Lai-Yun XIN ; Feng JIANG ; Zhen HUA ; Zhen-Yuan WANG ; Ling-Hui KONG ; Qi-Biao WU ; Yun-Lun LI
Chinese journal of integrative medicine 2025;31(8):677-684
OBJECTIVE:
To investigate the effectiveness of Xuanshen Yishen Decoction (XYD) in the treatment of hypertension.
METHODS:
Hospital electronic medical records from 2019-2023 were utilized to emulate a randomized pragmatic clinical trial. Hypertensive participants were eligible if they were aged ⩾40 years with baseline systolic blood pressure (BP) ⩾140 mm Hg. Patients treated with XYD plus antihypertensive regimen were assigned to the treatment group, whereas those who followed only antihypertensive regimen were assigned to the control group. The primary outcome assessed was the attainment rate of intensive BP control at discharge, with the secondary outcome focusing on the 6-month all-cause readmission rate.
RESULTS:
The study included 3,302 patients, comprising 2,943 individuals in the control group and 359 in the treatment group. Compared with the control group, a higher proportion in the treatment group achieved the target BP for intensive BP control [8.09% vs. 17.5%; odds ratio (OR)=2.29, 95% confidence interval (CI)=1.68 to 3.13; P<0.001], particularly in individuals with high homocysteine levels (OR=3.13; 95% CI=1.72 to 5.71; P<0.001; P for interaction=0.041). Furthermore, the 6-month all-cause readmission rate in the treatment group was lower than in the control group (hazard ratio=0.58; 95% CI=0.36 to 0.91; P=0.019), and the robustness of the results was confirmed by sensitivity analyse.
CONCLUSIONS
XYD could be a complementary therapy for intensive BP control. Our study offers real-world evidence and guides the choice of complementary and alternative therapies. (Registration No. ChiCTR2400086589).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Antihypertensive Agents/pharmacology*
;
Blood Pressure/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Hypertension/physiopathology*
;
Patient Readmission
;
Treatment Outcome
5.Phenotypic plasticity and secretory heterogeneity in subpopulations derived from single cancer cell.
Zhun LIN ; Siping LIANG ; Zhe PU ; Zhengyu ZOU ; Luxuan HE ; Christopher J LYON ; Yuanqing ZHANG ; Tony Y HU ; Minhao WU
Acta Pharmaceutica Sinica B 2025;15(5):2723-2735
Single-cell analysis of phenotypic plasticity could improve the development of more effective therapeutics. Still, the development of tools to measure single-cell heterogeneity has lagged due to difficulties in manipulating and culturing single cells. Here, we describe a single-cell culture and phenotyping platform that employs a starburst microfluidic network and automatic liquid handling system to capture single cells for long-term culture and multi-dimensional analysis and quantify their clonal properties via their surface biomarker and secreted cytokine/growth factor profiles. Studies performed on this platform found that cells derived from single-cell cultures maintained phenotypic equilibria similar to their parental populations. Single-cell cultures exposed to chemotherapeutic drugs stochastically disrupted this balance to favor stem-like cells. They had enhanced expression of mRNAs and secreted factors associated with cell signaling, survival, and differentiation. This single-cell analysis approach can be extended to analyze more complex phenotypes and screen responses to therapeutic targets.
6.Psychological stress-activated NR3C1/NUPR1 axis promotes ovarian tumor metastasis.
Bin LIU ; Wen-Zhe DENG ; Wen-Hua HU ; Rong-Xi LU ; Qing-Yu ZHANG ; Chen-Feng GAO ; Xiao-Jie HUANG ; Wei-Guo LIAO ; Jin GAO ; Yang LIU ; Hiroshi KURIHARA ; Yi-Fang LI ; Xu-Hui ZHANG ; Yan-Ping WU ; Lei LIANG ; Rong-Rong HE
Acta Pharmaceutica Sinica B 2025;15(6):3149-3162
Ovarian tumor (OT) is the most lethal form of gynecologic malignancy, with minimal improvements in patient outcomes over the past several decades. Metastasis is the leading cause of ovarian cancer-related deaths, yet the underlying mechanisms remain poorly understood. Psychological stress is known to activate the glucocorticoid receptor (NR3C1), a factor associated with poor prognosis in OT patients. However, the precise mechanisms linking NR3C1 signaling and metastasis have yet to be fully elucidated. In this study, we demonstrate that chronic restraint stress accelerates epithelial-mesenchymal transition (EMT) and metastasis in OT through an NR3C1-dependent mechanism involving nuclear protein 1 (NUPR1). Mechanistically, NR3C1 directly regulates the transcription of NUPR1, which in turn increases the expression of snail family transcriptional repressor 2 (SNAI2), a key driver of EMT. Clinically, elevated NR3C1 positively correlates with NUPR1 expression in OT patients, and both are positively associated with poorer prognosis. Overall, our study identified the NR3C1/NUPR1 axis as a critical regulatory pathway in psychological stress-induced OT metastasis, suggesting a potential therapeutic target for intervention in OT metastasis.
8.Propofol Promotes Anesthesia Through the Activation of Centrally-Projecting Edinger-Westphal Nucleus Urocortin 1-Positive Neurons.
Jing HUANG ; Yiwen HU ; Sheng JING ; Fuhai BAI ; Zonghong LONG ; Zhuoxi WU ; Liang FANG ; Lei CAO ; Youliang DENG ; Xiaohang BAO ; Hong LI
Neuroscience Bulletin 2025;41(6):1109-1114
9.Targeting 5-HT to Alleviate Dose-Limiting Neurotoxicity in Nab-Paclitaxel-Based Chemotherapy.
Shuangyue PAN ; Yu CAI ; Ronghui LIU ; Shuting JIANG ; Hongyang ZHAO ; Jiahong JIANG ; Zhen LIN ; Qian LIU ; Hongrui LU ; Shuhui LIANG ; Weijiao FAN ; Xiaochen CHEN ; Yejing WU ; Fangqian WANG ; Zheling CHEN ; Ronggui HU ; Liu YANG
Neuroscience Bulletin 2025;41(7):1229-1245
Chemotherapy-induced peripheral neurotoxicity (CIPN) is a severe dose-limiting adverse event of chemotherapy. Presently, the mechanism underlying the induction of CIPN remains unclear, and no effective treatment is available. In this study, through metabolomics analyses, we found that nab-paclitaxel therapy markedly increased serum serotonin [5-hydroxtryptamine (5-HT)] levels in both cancer patients and mice compared to the respective controls. Furthermore, nab-paclitaxel-treated enterochromaffin (EC) cells showed increased 5-HT synthesis, and serotonin-treated Schwann cells showed damage, as indicated by the activation of CREB3L3/MMP3/FAS signaling. Venlafaxine, an inhibitor of serotonin and norepinephrine reuptake, was found to protect against nerve injury by suppressing the activation of CREB3L3/MMP3/FAS signaling in Schwann cells. Remarkably, venlafaxine was found to significantly alleviate nab-paclitaxel-induced CIPN in patients without affecting the clinical efficacy of chemotherapy. In summary, our study reveals that EC cell-derived 5-HT plays a critical role in nab-paclitaxel-related neurotoxic lesions, and venlafaxine co-administration represents a novel approach to treating chronic cumulative neurotoxicity commonly reported in nab-paclitaxel-based chemotherapy.
Paclitaxel/toxicity*
;
Animals
;
Albumins/adverse effects*
;
Serotonin/metabolism*
;
Mice
;
Humans
;
Male
;
Female
;
Venlafaxine Hydrochloride/therapeutic use*
;
Neurotoxicity Syndromes/metabolism*
;
Middle Aged
;
Schwann Cells/metabolism*
;
Peripheral Nervous System Diseases/drug therapy*
;
Antineoplastic Agents
10.Expert consensus on apical microsurgery.
Hanguo WANG ; Xin XU ; Zhuan BIAN ; Jingping LIANG ; Zhi CHEN ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Xi WEI ; Kaijin HU ; Qintao WANG ; Zuhua WANG ; Jiyao LI ; Dingming HUANG ; Xiaoyan WANG ; Zhengwei HUANG ; Liuyan MENG ; Chen ZHANG ; Fangfang XIE ; Di YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Yi DU ; Junqi LING ; Lin YUE ; Xuedong ZHOU ; Qing YU
International Journal of Oral Science 2025;17(1):2-2
Apical microsurgery is accurate and minimally invasive, produces few complications, and has a success rate of more than 90%. However, due to the lack of awareness and understanding of apical microsurgery by dental general practitioners and even endodontists, many clinical problems remain to be overcome. The consensus has gathered well-known domestic experts to hold a series of special discussions and reached the consensus. This document specifies the indications, contraindications, preoperative preparations, operational procedures, complication prevention measures, and efficacy evaluation of apical microsurgery and is applicable to dentists who perform apical microsurgery after systematic training.
Microsurgery/standards*
;
Humans
;
Apicoectomy
;
Contraindications, Procedure
;
Tooth Apex/diagnostic imaging*
;
Postoperative Complications/prevention & control*
;
Consensus
;
Treatment Outcome


Result Analysis
Print
Save
E-mail