1.Clinical research and characteristic analysis of patients with advanced colorectal cancer treated with Yinyang Gongji Pills and capecitabine.
Lei WANG ; Chao-Yue YAO ; Jie-Ru ZHAN ; Xiao-Xia SUN ; Zhong-Xin YU ; Xiao-Ya LIANG ; Jian WANG ; Xue GONG ; Da-Rong WEI
China Journal of Chinese Materia Medica 2025;50(5):1404-1411
Yinyang Gongji Pills have the effects of strengthening the body resistance to eliminate pathogenic factors, removing stasis, and reducing swelling, which is a commonly used traditional Chinese medicine(TCM) formula for treating intestinal accumulation. A real-world, registered, and single-arm clinical trial was conducted to observe the clinical efficacy and safety of Yinyang Gongji Pills combined with capecitabine in the treatment of advanced colorectal cancer and analyze the clinical characteristics of the patients. A total of 60 patients with advanced colorectal cancer who refused or could not tolerate standard treatment of western medicine were included in the study. They were treated with Yinyang Gongji Pills combined with capecitabine until disease progression or intolerable adverse events occurred. The main observation indicators were progression-free survival(PFS) and safety. The treatment effects of the patients under different baseline characteristics were analyzed. The clinical trial has found that the median PFS of all enrolled patients was 7.3 months, with 30.1% of patients having a PFS exceeding 12.0 months. Layered analysis showed that the median PFS of patients with the onset site being the colon and rectum were respectively 8.4 and 4.7 months. The median PFS of patients with high, medium, and low tumor burden were respectively 7.0, 4.7, and 10.8 months. The median PFS of patients with wild-type and mutant-type RAS/BRAF were respectively 7.9 and 6.9 months. The median PFS of patients with KPS scores ≥80 and ≤70 were respectively 7.9 and 6.5 months. The median PFS of patients treated with Yinyang Gongji Pills for ≥6, 3-6, and ≤3 months were respectively 8.0, 5.2, and 4.2 months. The median PFS of patients with spleen, kidney, liver, and lung syndrome differentiation in TCM were respectively 8.3, 6.7, 7.3, and 5.6 months. The median PFS of patients with TCM pathological factors including phlegm, dampness, and blood stasis were respectively 7.0, 7.3, and 6.5 months. Common adverse reactions include anemia, decreased white blood cells, decreased appetite, fatigue, and hand foot syndrome, with incidence rates being respectively 44.2%, 34.6%, 42.3%, 32.7%, and 17.3%. The results showed that the combination of Yinyang Gongji Pills and capecitabine demonstrated potential clinical efficacy and good safety in this study. The patients have clinical characteristics such as low tumor burden, onset site at the colon, KPS scores ≥ 80, long duration of oral TCM, and TCM syndrome differentiation including spleen or liver.
Humans
;
Capecitabine/adverse effects*
;
Colorectal Neoplasms/mortality*
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Middle Aged
;
Female
;
Aged
;
Adult
;
Treatment Outcome
2.Dehydrodiisoeugenol resists H1N1 virus infection via TFEB/autophagy-lysosome pathway.
Zhe LIU ; Jun-Liang LI ; Yi-Xiang ZHOU ; Xia LIU ; Yan-Li YU ; Zheng LUO ; Yao WANG ; Xin JIA
China Journal of Chinese Materia Medica 2025;50(6):1650-1658
The present study delves into the cellular mechanisms underlying the antiviral effects of dehydrodiisoeugenol(DEH) by focusing on the transcription factor EB(TFEB)/autophagy-lysosome pathway. The cell counting kit-8(CCK-8) was utilized to assess the impact of DEH on the viability of human non-small cell lung cancer cells(A549). The inhibitory effect of DEH on the replication of influenza A virus(H1N1) was determined by real-time quantitative polymerase chain reaction(RT-qPCR). Western blot was employed to evaluate the influence of DEH on the expression level of the H1N1 virus nucleoprotein(NP). The effect of DEH on the fluorescence intensity of NP was examined by the immunofluorescence assay. A mouse model of H1N1 virus infection was established via nasal inhalation to evaluate the therapeutic efficacy of 30 mg·kg~(-1) DEH on H1N1 virus infection. RNA sequencing(RNA-seq) was performed for the transcriptional profiling of mouse embryonic fibroblasts(MEFs) in response to DEH. The fluorescent protein-tagged microtubule-associated protein 1 light chain 3(LC3) was used to assess the autophagy induced by DEH. Western blot was employed to determine the effect of DEH on the autophagy flux of LC3Ⅱ/LC3Ⅰ under viral infection conditions. Lastly, the role of TFEB expression in the inhibition of DEH against H1N1 infection was evaluated in immortalized bone marrow-derived macrophage(iBMDM), both wild-type and TFEB knockout. The results revealed that the half-maximal inhibitory concentration(IC_(50)) of DEH for A549 cells was(87.17±0.247)μmol·L~(-1), and DEH inhibited H1N1 virus replication in a dose-dependent manner in vitro. Compared with the H1N1 virus-infected mouse model, the treatment with DEH significantly improved the body weights and survival time of mice. DEH induced LC3 aggregation, and the absence of TFEB expression in iBMDM markedly limited the ability of DEH to counteract H1N1 virus replication. In conclusion, DEH exerts its inhibitory activity against H1N1 infection by activating the TFEB/autophagy-lysosome pathway.
Influenza A Virus, H1N1 Subtype/genetics*
;
Animals
;
Autophagy/drug effects*
;
Humans
;
Mice
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Influenza, Human/metabolism*
;
Lysosomes/metabolism*
;
Orthomyxoviridae Infections/genetics*
;
Eugenol/pharmacology*
;
Antiviral Agents/pharmacology*
;
Virus Replication/drug effects*
;
A549 Cells
;
Male
3.Tetrahydropalmatine acts on α7nAChR to regulate inflammation and polarization of BV2 microglia.
Yan-Jun WANG ; Guo-Liang DAI ; Pei-Yao CHEN ; Hua-Xi HANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(11):3117-3126
Based on the α7 nicotinic acetylcholine receptor(α7nAChR), this study examined how tetrahydropalmatine(THP) affected BV2 microglia exposed to lipopolysaccharide(LPS), aiming to clarify the possible mechanism underlying the anti-depression effect of THP from the perspectives of preventing inflammation and regulating polarization. First, after molecular docking and determination of the content of Corydalis saxicola Bunting total alkaloids, THP was initially identified as a possible anti-depression component. The BV2 microglia model of inflammation was established with LPS. BV2 microglia were allocated into a normal group, a model group, low-and high-dose(20 and 40 μmol·L~(-1), respectively) THP groups, and a THP(20 μmol·L~(-1))+α7nAChR-specific antagonist MLA(1 μmol·L~(-1)) group. The CCK-8 assay was used to screen the safe concentration of THP. A light microscope was used to examine the morphology of the cells. Western blot and immunofluorescence were used to determine the expression of α7nAChR. qRT-PCR was performed to determine the mRNA levels of inducible nitric oxide synthase(iNOS), cluster of differentiation 86(CD86), suppressor of cytokine signaling 3(SOCS3), arginase-1(Arg-1), cluster of differentiation 206(CD206), tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1β. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. The experimental results showed that THP at concentrations of 40 μmol·L~(-1) and below had no effect on BV2 microglia. THP improved the morphology of BV2 microglia, significantly up-regulated the protein level of α7nAChR, significantly down-regulated the mRNA levels of iNOS, CD86, SOCS3, TNF-α, IL-6, and IL-1β, significantly up-regulated the mRNA levels of Arg-1 and CD206, and dramatically lowered the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. However, the antagonist MLA abolished the above-mentioned ameliorative effects of THP on LPS-treated BV2 microglia. As demonstrated by the aforementioned findings, THP protected LPS-treated BV2 microglia by regulating the M1/M2 polarization and preventing inflammation, which might be connected to the regulation of α7nAChR on BV2 microglia.
Berberine Alkaloids/chemistry*
;
alpha7 Nicotinic Acetylcholine Receptor/chemistry*
;
Microglia/metabolism*
;
Mice
;
Animals
;
Cell Line
;
Corydalis/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Inflammation/drug therapy*
;
Nitric Oxide Synthase Type II/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
4.Effect and mechanism of Xintong Granules in ameliorating myocardial ischemia-reperfusion injury in rats by regulating gut microbiota.
Yun-Jia WANG ; Ji-Dong ZHOU ; Qiu-Yu SU ; Jing-Chun YAO ; Rui-Qiang SU ; Guo-Fei QIN ; Gui-Min ZHANG ; Hong-Bao LIANG ; Shuai FENG ; Jia-Cheng ZHANG
China Journal of Chinese Materia Medica 2025;50(14):4003-4014
This study investigates the mechanism by which Xintong Granules improve myocardial ischemia-reperfusion injury(MIRI) through the regulation of gut microbiota and their metabolites, specifically short-chain fatty acids(SCFAs). Rats were randomly divided based on body weight into the sham operation group, model group, low-dose Xintong Granules group(1.43 g·kg~(-1)·d~(-1)), medium-dose Xintong Granules group(2.86 g·kg~(-1)·d~(-1)), high-dose Xintong Granules group(5.72 g·kg~(-1)·d~(-1)), and metoprolol group(10 mg·kg~(-1)·d~(-1)). After 14 days of pre-administration, the MIRI rat model was established by ligating the left anterior descending coronary artery. The myocardial infarction area was assessed using the 2,3,5-triphenyltetrazolium chloride(TTC) staining method. Apoptosis in tissue cells was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) assay. Pathological changes in myocardial cells and colonic tissue were observed using hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), creatine kinase MB isoenzyme(CK-MB), and cardiac troponin T(cTnT) in rat serum were quantitatively measured using enzyme-linked immunosorbent assay(ELISA) kits. The activities of lactate dehydrogenase(LDH), creatine kinase(CK), and superoxide dismutase(SOD) in myocardial tissue, as well as the level of malondialdehyde(MDA), were determined using colorimetric assays. Gut microbiota composition was analyzed by 16S rDNA sequencing, and fecal SCFAs were quantified using gas chromatography-mass spectrometry(GC-MS). The results show that Xintong Granules significantly reduced the myocardial infarction area, suppressed cardiomyocyte apoptosis, and decreased serum levels of pro-inflammatory cytokines(TNF-α, IL-1β, and IL-6), myocardial injury markers(CK-MB, cTnT, LDH, and CK), and oxidative stress marker MDA. Additionally, Xintong Granules significantly improved intestinal inflammation in MIRI rats, regulated gut microbiota composition and diversity, and increased the levels of SCFAs(acetate, propionate, isobutyrate, etc.). In summary, Xintong Granules effectively alleviate MIRI symptoms. This study preliminarily confirms that Xintong Granules exert their inhibitory effects on MIRI by regulating gut microbiota imbalance and increasing SCFA levels.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Myocardial Reperfusion Injury/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Apoptosis/drug effects*
;
Humans
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/genetics*
;
Malondialdehyde/metabolism*
5.Complications among patients undergoing orthopedic surgery after infection with the SARS-CoV-2 Omicron strain and a preliminary nomogram for predicting patient outcomes.
Liang ZHANG ; Wen-Long GOU ; Ke-Yu LUO ; Jun ZHU ; Yi-Bo GAN ; Xiang YIN ; Jun-Gang PU ; Huai-Jian JIN ; Xian-Qing ZHANG ; Wan-Fei WU ; Zi-Ming WANG ; Yao-Yao LIU ; Yang LI ; Peng LIU
Chinese Journal of Traumatology 2025;28(6):445-453
PURPOSE:
The rate of complications among patients undergoing surgery has increased due to infection with SARS-CoV-2 and other variants of concern. However, Omicron has shown decreased pathogenicity, raising questions about the risk of postoperative complications among patients who are infected with this variant. This study aimed to investigate complications and related factors among patients with recent Omicron infection prior to undergoing orthopedic surgery.
METHODS:
A historical control study was conducted. Data were collected from all patients who underwent surgery during 2 distinct periods: (1) between Dec 12, 2022 and Jan 31, 2023 (COVID-19 positive group), (2) between Dec 12, 2021 and Jan 31, 2022 (COVID-19 negative control group). The patients were at least 18 years old. Patients who received conservative treatment after admission or had high-risk diseases or special circumstances (use of anticoagulants before surgery) were excluded from the study. The study outcomes were the total complication rate and related factors. Binary logistic regression analysis was used to identify related factors, and odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the impact of COVID-19 infection on complications.
RESULTS:
In the analysis, a total of 847 patients who underwent surgery were included, with 275 of these patients testing positive for COVID-19 and 572 testing negative. The COVID-19-positive group had a significantly higher rate of total complications (11.27%) than the control group (4.90%, p < 0.001). After adjusting for relevant factors, the OR was 3.08 (95% CI: 1.45-6.53). Patients who were diagnosed with COVID-19 at 3-4 weeks (OR = 0.20 (95% CI: 0.06-0.59), p = 0.005), 5-6 weeks (OR = 0.16 (95% CI: 0.04-0.59), p = 0.010), or ≥7 weeks (OR = 0.26 (95% CI: 0.06-1.02), p = 0.069) prior to surgery had a lower risk of complications than those who were diagnosed at 0-2 weeks prior to surgery. Seven factors (age, indications for surgery, time of operation, time of COVID-19 diagnosis prior to surgery, C-reactive protein levels, alanine transaminase levels, and aspartate aminotransferase levels) were found to be associated with complications; thus, these factors were used to create a nomogram.
CONCLUSION
Omicron continues to be a significant factor in the incidence of postoperative complications among patients undergoing orthopedic surgery. By identifying the factors associated with these complications, we can determine the optimal surgical timing, provide more accurate prognostic information, and offer appropriate consultation for orthopedic surgery patients who have been infected with Omicron.
Humans
;
COVID-19/complications*
;
Male
;
Female
;
Middle Aged
;
Postoperative Complications/epidemiology*
;
SARS-CoV-2
;
Orthopedic Procedures/adverse effects*
;
Aged
;
Nomograms
;
Adult
;
Retrospective Studies
;
Risk Factors
6.Roles of reactive oxygen species and lactate dehydrogenase isoenzyme X in changes of sperm mitochondrial membrane in patients with varicocele-induced infertility.
Xiao-Xia ZHANG ; Ru-Yao LI ; Liang-Liang YU ; Jun ZHOU
National Journal of Andrology 2025;31(1):19-24
OBJECTIVE:
To explore the role of reactive oxygen species (ROS) and lactate dehydrogenase isoenzyme X (LDH-X) in the changes of sperm mitochondrial membrane potential (MMP) in infertility patients with varicocele (VC).
METHODS:
This study included 38 infertility patients with VC (VCinf), 35 non-VC infertile males (NVCinf), and 30 normal fertile men as controls. We obtained the routine semen parameters using the sperm quality analysis system, examined the contents of LDH-X in the seminal plasma and sperm with the automatic biochemical analyzer, measured the level of malondialdehyde (MDA) in seminal plasma by thiobarbituric acid (TBA) colorimetry, and determined the expressions of mitochondrial membrane potential (MMP) and LDH-X mRNA in the sperm using JC-1 fluorescence probe and RT-PCR.
RESULTS:
No statistically significant differences were observed among the three groups of subjects in age, semen pH value, semen volume and sperm concentration (P > 0.05). Compared with the normal fertile controls, the patients in the VCinf and NVCinf groups showed significantly decreased sperm motility ([52.36 ± 12.48]% vs [34.74 ± 15.23]% vs [25.76 ± 13.73]%, P< 0.05), percentage of progressively motile sperm (PMS) ([42.54 ± 13.58]% vs [29.10 ± 14.17]% vs [20.95 ± 12.33]%, P< 0.05), sperm LDH-X ([16.46 ± 5.47] vs [13.63 ± 4.50] vs [10.18 ± 3.00] mU/106, P< 0.05), sperm MMP ([48.04 ± 11.62]% vs [40.86 ± 12.69]% vs [34.41 ± 13.93]%, P< 0.05) and expression of sperm LDH-X mRNA (P< 0.05). but increased seminal plasma LDH-X ([935.36 ± 229.48] vs [1241.05 ± 337.07] vs [1425.08 ± 469.35] U/L, P< 0.05), seminal plasma/whole sperm LDH-X ([1.06 ± 0.35] vs [1.40 ± 0.34] vs [1.63 ± 0.66], P< 0.05), and content of seminal plasma MDA ([1.10 ± 0.19] vs [1.59 ± 0.27] vs [2.00 ± 0.22] nmol/ml, P< 0.05).
CONCLUSION
Excessive ROS in the reproductive system of VCinf patients reduces the content of MMP and causes the overflow of LDH-X out of sperm cells. Therefore the decrease of sperm LDH-X may be accompanied by that of MMP.
Humans
;
Male
;
Infertility, Male/etiology*
;
Varicocele/metabolism*
;
Adult
;
Reactive Oxygen Species/metabolism*
;
Spermatozoa/metabolism*
;
L-Lactate Dehydrogenase/metabolism*
;
Membrane Potential, Mitochondrial
;
Isoenzymes/metabolism*
;
Case-Control Studies
;
Young Adult
;
Mitochondrial Membranes/metabolism*
7.Effect of formononetin on inflammation and immunity in autoimmune prostatitis: An exploration based on JAK/STAT signaling pathways.
Quan-Yao YU ; Jian-Ming SUN ; Shi-Jia LIANG ; Jian-Min MAO
National Journal of Andrology 2025;31(3):208-215
OBJECTIVE:
To investigate the action mechanism of formononetin (FN) in regulating T helper type 1 (Th1) cell differentiation and macrophage polarization through JAK/STAT signaling pathways in a mouse model of experimental autoimmune prostatitis (EAP).
METHODS:
Forty non-obese diabetic (NOD) male mice were randomly divided into four groups: normal control, EAP model control, low-dose FN (LFN, 50 mg/kg) and high-dose FN (HFN, 100 mg/kg). The EAP model was established in the latter three groups by subcutaneous injection of prostate antigens (PAgs) combined with complete Freund's adjuvant (CFA). After modeling, the mice in the LFN and HFN groups were treated intragastrically with FN at 50 and 100 mg/kg/d, respectively, and those in the normal and model controls groups with carboxymethylcellulose sodium (CMC-Na). At 42 days after treatment, all the animals were killed and relevant tissues collected for observation of the pathological changes in the prostate tissue by HE staining, detection of Th1 cell differentiation and macrophage polarization in the prostate by immunofluorescence double staining (labeling CD4 and interferon-γ [IFN-γ], inducible nitric oxide synthase [iNOS] and CD206), measurement of the ratio of Th1 cells/macrophages in the spleen by flow cytometry and the levels of IFN-γ and tumor necrosis factor-α (TNF-α) in the serum by ELISA, and determination of the expressions of phosphorylated (p)-Janus kinase (JAK)1, JAK1, p-JAK2, JAK2, p-signal transducer and activator of transcription (STAT1) in the prostate tissue by Western blot.
RESULTS:
Compared with the model controls, the mice treated with low- and high-dose FN exhibited more orderly arrangement of glandular epithelial cells, significantly reduced prostatic tissue inflammation scores (P<0.05), and decreased proportion of Th1 cells and expression of M1 macrophages (P<0.05), but increased expression of M2 macrophages in the prostate and spleen tissues (P<0.05). Besides, the levels of inflammatory cytokines IFN-γ (P<0.05) and TNF-α (P<0.05) in the serum of the mice in the LFN and HFN groups were remarkably reduced, and so were the ratios of p-JAK1/JAK1, p-JAK2/JAK2 and p-STAT1/STAT1 in the prostate tissues at the molecular level (P<0.05), indicating the therapeutic effect of FN on EAP by regulating JAK/STAT signaling pathways, promoting inflammation resolution, and restoring immune balance.
CONCLUSION
FN alleviates EAP by inhibiting JAK/STAT signaling pathways and regulating Th1 cell differentiation and macrophage polarization.
Animals
;
Male
;
Prostatitis/metabolism*
;
Signal Transduction
;
Mice
;
Isoflavones/therapeutic use*
;
Mice, Inbred NOD
;
Autoimmune Diseases/metabolism*
;
Macrophages
;
Inflammation
;
Th1 Cells
;
Janus Kinases/metabolism*
;
Cell Differentiation
;
Disease Models, Animal
;
STAT Transcription Factors/metabolism*
8.Clinical and genetic analysis of a patient with FSIP2 compound heterozygous variants causing multiple morphological abnormalities of sperm flagella.
Yao-Qi CHEN ; Li-Qi XU ; Yi-Bo DAI ; Liang-Yu YAO ; Shen-Ming YANG ; Lu-Yu HUANG ; Xi YANG ; Yi YU ; Jing-Ming YANG ; Ke-Rong WU
National Journal of Andrology 2025;31(5):395-402
OBJECTIVE:
The aim of this study is to analyze the clinical features and genetic etiology of a patient with multiple morphological abnormalities of the sperm flagella (MMAF) retrospectively.
METHODS:
A severely oligospermic patient from the Reproductive Center of the First Affiliated Hospital of Ningbo University was selected as the study subject. Clinical data and examination results were collected. High-throughput sequencing and bioinformatics were used to analyze the genetic etiology. And Sanger sequencing was employed to validate findings in the family. Transmission electron microscopy (TEM) was used to observe the sperm ultrastructure, and immunofluorescence analysis was performed to examine the localization of FSIP2 protein in the sperm.
RESULTS:
The patient presented with severe oligospermia, and sperm morphology displayed MMAF. TEM revealed fibrous sheath and 9+2 microtubule structural disruptions in the sperm. Sequencing identified compound heterozygous variants in the FSIP2 gene (c.17798C > T, c.5927T > G), inherited from the father and mother, respectively. According to the guidelines of the American College of Medical Genetics and Genomics, the variants were classified as pathogenic. The patient's spouse underwent intracytoplasmic single sperm injection, resulting in one embryo, but no clinical pregnancy occurred after embryo transfer.
CONCLUSION
This study reported the mutation of FSIP2 gene c.17798C > T, c.5927T > G in a patient with MMAF. These findings expand the mutational spectrum of the FSIP2 gene and provide insights for genetic and assisted reproductive counseling for patients with MMAF.
Humans
;
Male
;
Sperm Tail/pathology*
;
Heterozygote
;
Oligospermia/genetics*
;
Spermatozoa
;
Mutation
;
Infertility, Male/genetics*
;
Adult
;
Pedigree
;
Retrospective Studies
;
Sperm Injections, Intracytoplasmic
9.Research progress of circular RNA in male reproductive disorders.
Wen-Chuan SHAO ; Liang-Yu YAO ; Ning-Hong SONG
National Journal of Andrology 2025;31(8):742-746
Male reproductive disorders have emerged as a global issue. Infertility affects 8% to 12% of couples of childbearing age. The sperm concentration and total sperm count of men have shown a significant downward trend over the past four decades, with a decrease of more than 50%. Male reproductive disorders are related to multiple factors. Circular RNA (circRNA) is a type of non-coding RNA with covalently closed circular structures. It is involved in a variety of biological processes, including gene expression regulation, protein function regulation and epigenetic regulation. Studies have shown that there are differences in the expression of circRNA in the testicles and semen between infertile patients and healthy people, suggesting that circRNA is involved in the process of spermatogenesis, and its abnormal expression is associated with male infertility. This review takes the biological functions of circRNA as the starting point and summarizes the research progress of circRNA in male reproductive disorders. CircRNA has the potential to serve as a novel biomarker due to its conservative, special structure and tissue specificity, which provides a new strategy for the clinical diagnosis of male reproductive disorders.
Humans
;
Male
;
RNA, Circular
;
Infertility, Male/genetics*
;
RNA/genetics*
;
Spermatogenesis
10.Association between blood pressure traits, hypertension, antihypertensive drugs and calcific aortic valve stenosis: a mendelian randomization study.
Wen-Hua LEI ; Jia-Liang ZHANG ; Yan-Biao LIAO ; Yan WANG ; Fei XU ; Yao-Yu ZHANG ; Yanjiani XU ; Jing ZHOU ; Fang-Yang HUANG ; Mao CHEN
Journal of Geriatric Cardiology 2025;22(3):351-360
BACKGROUND:
Hypertension is associated with an increased risk of calcific aortic valve stenosis (CAVS). However, the directionality of causation between blood pressure traits and aortic stenosis is unclear, as is the benefit of antihypertensive drugs for CAVS.
METHODS:
Using genome-wide association studies (GWAS) summary statistics, we performed bidirectional two-sample univariable mendelian randomization (UVMR) to assess the causal associations of systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP) with CAVS. Multivariable mendelian randomization (MVMR) was conducted to evaluate the direct effect of hypertension on CAVS, adjusting for confounders. Drug target mendelian randomization (MR) and summary-level MR (SMR) were used to estimate the effects of 12 classes of antihypertensive drugs and their target genes on CAVS risk. Inverse variance weighting was the primary MR method, with sensitivity analyses to validate results.
RESULTS:
UVMR showed SBP, DBP, and PP have causal effects on CAVS, with no significant reverse causality. MVMR confirmed the causality between hypertension and CAVS after adjusting for confounders. Drug-target MR analyses indicated that calcium channel blockers (CCBs), loop diuretics, and thiazide diuretics via SBP lowering exerted protective effects on CAVS risk. SMR analysis showed that the CCBs target gene CACNA2D2 and ARBs target gene AGTR1 were positively associated with CAVS risk, while diuretics target genes SLC12A5 and SLC12A1 were negatively associated with aortic stenosis risk.
CONCLUSIONS
Hypertension has a causal relationship with CAVS. Managing SBP in hypertensive patients with CCBs may prevent CAVS. ARBs might exert protective effects on CAVS independent of blood pressure reduction. The relationship between diuretics and CAVS is complex, with opposite effects through different mechanisms.

Result Analysis
Print
Save
E-mail